[1] |
WANG X, HUANG C, YAO L, et al. A survey on expert recommendation in community question answering[J]. Journal of Computer Science and Technology, 2018, 33(4): 625-653.
DOI
URL
|
[2] |
NIKZAD-KHASMAKHI N, BALAFAR M A, FEIZI-DERA-KHSHI M R. The state-of-the-art in expert recommendation systems[J]. Engineering Applications of Artificial Intelligence, 2019, 82: 126-147.
DOI
URL
|
[3] |
LIU X Y, CROFT W B, KOLL M B. Finding experts in community-based question-answering services[C]// Procee-dings of the 2005 ACM CIKM International Conference on Information and Knowledge Management, Bremen, Oct 31-Nov 5, 2005. New York: ACM, 2005: 315-316.
|
[4] |
LIU M R, LIU Y C, YANG Q. Predicting best answerers for new questions in community question answering[C]// LNCS 6184: Proceedings of the 11th International Conference on Web-Age Information Management, Jiuzhaigou, Jul 15-17, 2010. Berlin, Heidelberg: Springer, 2010: 127-138.
|
[5] |
SHEN Y K, RONG W G, SUN Z W, et al. Question/Answer matching for CQA system via combining lexical and seque-ntial information[C]// Proceedings of the 29th AAAI Confe-rence on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 275-281.
|
[6] |
YANG L, QIU M H, GOTTIPATI S, et al. CQArank: jointly model topics and expertise in community question answe-ring[C]// Proceedings of the 22nd ACM International Confe-rence on Information and Knowledge Management, San Fran-cisco, Oct 27-Nov 1, 2013. New York: ACM, 2013: 99-108.
|
[7] |
GUO H, TANG R, YE Y, et al. DeepFM: a factorization-machine based neural network for CTR prediction[C]// Procee-dings of the 26th International Joint Conference on Artifi-cial Intelligence. New York: ACM, 2017: 1725-1731.
|
[8] |
LIAN J, ZHOU X, ZHANG F, et al. XDeepFM: combining explicit and implicit feature interactions for recommender systems[C]// Proceedings of the 24th ACM SIGKDD Interna-tional Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1754-1763.
|
[9] |
SHEN Y, HE X, GAO J, et al. A latent semantic model with convolutional-pooling structure for information retrieval[C]// Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. New York: ACM, 2014: 101-110.
|
[10] |
YIN H, ZHOU X, CUI B, et al. Adapting to user interest drift for POI recommendation[J]. IEEE Transactions on Know-ledge and Data Engineering, 2016, 28(10): 2566-2581.
|
[11] |
ZHANG S, YAO L, SUN A, et al. Deep learning based reco-mmender system: a survey and new perspectives[J]. ACM Computing Surveys, 2019, 52(1): 1-38.
|
[12] |
DAS D, SAHOO L, DATTA S. A survey on recommen-dation system[J]. International Journal of Computer Appli-cations, 2017, 160(7): 6-10.
|
[13] |
WU H, WANG Y J, CHENG X. Incremental probabilistic latent semantic analysis for automatic question recommen-dation[C]// Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Oct 23-25, 2008. New York: ACM, 2008: 99-106.
|
[14] |
PAL A, KONSTAN J A. Expert identification in community question answering: exploring question selection bias[C]// Proceedings of the 19th ACM Conference on Information and Knowledge Management, Toronto, Oct 26-30, 2010. New York: ACM, 2010: 1505-1508.
|
[15] |
HUANG P S, HE X D, GAO J F, et al. Learning deep struc-tured semantic models for web search using clickthrough data[C]// Proceedings of the 22nd ACM International Confe-rence on Information and Knowledge Management, San Fran-cisco, Oct 27-Nov 1, 2013. New York: ACM, 2013: 2333-2338.
|
[16] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Confe-rence on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
|
[17] |
KE H, CHEN D, LI X, et al. Towards brain big data classifi-cation: epileptic EEG identification with a lightweight VGGNet on global MIC[J]. IEEE Access, 2018, 6: 14722-14733.
DOI
URL
|
[18] |
GUO B, ZHANG C, LIU J, et al. Improving text classifi-cation with weighted word embeddings via a multi-channel TextCNN model[J]. Neurocomputing, 2019, 363: 366-374.
DOI
URL
|
[19] |
KARIMI E, MAJIDI B, MANZURI M T. Relevant ques-tion answering in community based networks using deep LSTM neural networks[C]// Proceedings of the 2019 7th Ira-nian Joint Congress on Fuzzy and Intelligent Systems. Pisca-taway: IEEE, 2019: 1-5.
|
[20] |
YANG M, TU W, QU Q, et al. Advanced community question answering by leveraging external knowledge and multitask learning[J]. Knowledge-Based Systems, 2019, 171: 106-119.
DOI
URL
|
[21] |
DENG Y, LAM W, XIE Y, et al. Joint learning of answer selection and answer summary generation in community ques-tion answering[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 7651-7658.
|
[22] |
LIU J, YANG Y, LV S, et al. Attention-based BiGRU-CNN for Chinese question classification[J]. Journal of Ambient Inte-lligence and Humanized Computing, 2019. DOI: 10.1007/s12652-019-01344-9.
DOI
|
[23] |
ZHANG Y, LU W, OU W, et al. Chinese medical question ans-wer selection via hybrid models based on CNN and GRU[J]. Multimedia Tools and Applications, 2020, 79(21): 14751-14776.
DOI
URL
|
[24] |
YUAN S, ZHANG Y, TANG J, et al. Expert finding in commu-nity question answering: a review[J]. Artificial Intelligence Review, 2020, 53(2): 843-874.
DOI
URL
|
[25] |
FU J, LI Y, ZHANG Q, et al. Recurrent memory reasoning network for expert finding in community question answering[C]// Proceedings of the 13th International Conference on Web Search and Data Mining. New York: ACM, 2020: 187-195.
|