[1] |
GAO M, LIU K C, WU Z F. Personalization in web compu-ting and informatics: theories, techniques, applications, and future research[J]. Information Systems Frontiers, 2010, 5(12): 607-629.
|
[2] |
CACHEDA F, CARNEIRO V, FERNÁNDEZ D. Comparison of collaborative filtering algorithms: limitations of current techniques and proposals for scalable, high-performance re-commender systems[J]. ACM Transactions on the Web, 2011, 1(5): 1-33.
DOI
URL
|
[3] |
GOLDBERG D, NICHOLS D, OKI B M, et al. Using colla-borative filtering to weave an information tapestry[J]. Com-munications of the ACM, 1992, 35(12): 61-70.
|
[4] |
ADOMAVICIUS G, TUZHILIN A. Toward the next genera-tion of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Know-ledge and Data Engineering, 2005, 17(6): 734-749.
|
[5] |
SHANI G, GUNAWARDANA A. Recommender system hand-book[M]. RICCIF, ROKACHL,SHAPIRA B, eds.eds. 2nd ed. Berlin, Heidelberg: Springer, 2011: 257-297.
|
[6] |
BOBADILLA J, SERRADILLA F, HERNANDO A. Collabo-rative filtering adapted to recommender systems of e-learning[J]. Knowledge-Based Systems, 2009, 22(4): 261-265.
DOI
URL
|
[7] |
SHAMBOUR Q, LU J. A trust-semantic fusion-based recom-mendation approach for e-business applications[J]. Decision Support Systems, 2012, 54(1): 768-780.
DOI
URL
|
[8] |
DOMINGOS P, HULTEN G. Catching up with the data: re-search issues in mining data streams[C]// Proceedings of the 2001 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, Santa Barbara, May 20, 2001. New York: ACM, 2001: 10-15.
|
[9] |
LUO X, XIA Y, ZHU Q, et al. Boosting the K-nearest-neigh-borhood based incremental collaborative filtering[J]. Know-ledge-Based Systems, 2013, 53: 90-99.
|
[10] |
MIRANDA C, JORGE A. Item-based and user-based incre-mental collaborative filtering for web recommendations[C]// LNCS 5816: Proceedings of the 14th Portuguese Conference on Artificial Intelligence, Aveiro, Oct 12-15, 2009. Berlin, Heidelberg: Springer, 2009: 673-684.
|
[11] |
WANG X W, ZHANG J. Using incremental clustering tech-nique in collaborative filtering data update[C]// Proceedings of the 15th IEEE International Conference on Information Reuse & Integration, Redwood City, Aug 13-15, 2014. Was-hington: IEEE Computer Society, 2014: 420-427.
|
[12] |
SU X, LAN Y, WAN R, et al. A fast incremental clustering algorithm[C]// Proceedings of the 2009 International Sym-posium on Information Processing, Huangshan, Aug 21-23, 2009: 175-178.
|
[13] |
VINAGRE J, JORGE A M, GAMA J. Fast incremental matrix factorization for recommendation with positive-only feed-back[C]// LNCS 8538: Proceeding of the 22nd International Conference on User Modeling, Adaptation, and Personaliza-tion, Aalborg, Jul 7-11, 2014. Cham: Springer, 2014: 459-470.
|
[14] |
LUO X, ZHOU M C, LEUNG H, et al. An incremental-and-static-combined scheme for matrix-factorization-based colla-borative filtering[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(1): 333-343.
DOI
URL
|
[15] |
SUN L, LI D, YANG Y. IncRMF: an incremental recommen-dation algorithm based on regularized matrix factorization[C]// Proceedings of the 2018 2nd International Conference on Big Data and Internet of Things, Beijing, Oct 24-26, 2018. New York: ACM, 2018: 203-207.
|