计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (9): 2143-2150.DOI: 10.3778/j.issn.1673-9418.2101040
收稿日期:
2021-01-11
修回日期:
2021-03-10
出版日期:
2022-09-01
发布日期:
2021-03-29
通讯作者:
+ E-mail: jnpengli@outlook.com作者简介:
陈灏然(1995—),男,江苏盐城人,硕士研究生,主要研究方向为小目标检测、数据增强、深度学习。基金资助:
CHEN Haoran1, PENG Li1,+(), LI Wentao1, DAI Feifei2
Received:
2021-01-11
Revised:
2021-03-10
Online:
2022-09-01
Published:
2021-03-29
About author:
CHEN Haoran, born in 1995, M.S. candidate. His research interests include small object detection, data augmentation and deep learning.Supported by:
摘要:
对于一幅图的观察,本能上会更多关注这幅图中相对更醒目的对象。通常这类对象会在这幅图中占据较大比重,从而导致小目标被忽视。由于小目标所在区域往往为弱测区域,检测器提取特征的过程中能够提取的特征较少,且在提取完特征后在特征信息传递的过程中容易丢失,使得针对小目标检测的效果并不是很好。因此,在单阶检测器的基础上,加入了跨信道交互的机制确保层间信息的完整,同时采取对训练样本进行目标增强并且设计了一个通用的损失函数,在此基础上改进样本加权网络预测样本的任务权重。提出的框架UWN在VOC公开数据集上的mAP为81.2%,在自制的小目标航拍数据集的mAP为82.3%。相对于FSSD算法,牺牲了部分速度,得到了精度方面的较大提升。
中图分类号:
陈灏然, 彭力, 李文涛, 戴菲菲. 加权网络下的小目标检测算法[J]. 计算机科学与探索, 2022, 16(9): 2143-2150.
CHEN Haoran, PENG Li, LI Wentao, DAI Feifei. Small Object Detection Algorithm Based on Weighted Network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2143-2150.
Method | Fusion-layer | Enhancement? | k | mAP/% | FPS(1080Ti) |
---|---|---|---|---|---|
ele-sum | all | √ | 3 | 78.2 | 23 |
concat | all | √ | 3 | 77.3 | 28 |
ele-sum | Conv4-fc7-Conv7 | √ | 3 | 81.2 | 79 |
ele-sum | Conv4-fc7-Conv7 | × | 3 | 80.3 | 77 |
ele-sum | Conv4-fc7-Conv7 | √ | 5 | 79.8 | 67 |
ele-sum | Conv4-fc7-Conv7 | × | 5 | 77.5 | 60 |
ele-sum | Conv4-fc7-Conv7 | √ | 7 | 79.8 | 62 |
ele-sum | Conv4-fc7-Conv7 | × | 7 | 77.5 | 57 |
表1 不同 k值在VOC2007+2012下检测结果
Table 1 Test results of different k under VOC2007+2012
Method | Fusion-layer | Enhancement? | k | mAP/% | FPS(1080Ti) |
---|---|---|---|---|---|
ele-sum | all | √ | 3 | 78.2 | 23 |
concat | all | √ | 3 | 77.3 | 28 |
ele-sum | Conv4-fc7-Conv7 | √ | 3 | 81.2 | 79 |
ele-sum | Conv4-fc7-Conv7 | × | 3 | 80.3 | 77 |
ele-sum | Conv4-fc7-Conv7 | √ | 5 | 79.8 | 67 |
ele-sum | Conv4-fc7-Conv7 | × | 5 | 77.5 | 60 |
ele-sum | Conv4-fc7-Conv7 | √ | 7 | 79.8 | 62 |
ele-sum | Conv4-fc7-Conv7 | × | 7 | 77.5 | 57 |
Algorithm | Change focal loss? | mAP/% |
---|---|---|
UWN | √ | 81.2 |
× | 80.9 |
表2 不同损失函数在VOC2007+2012下检测结果
Table 2 Test results of different methods under VOC2007+2012
Algorithm | Change focal loss? | mAP/% |
---|---|---|
UWN | √ | 81.2 |
× | 80.9 |
Method | Backbone | Train | mAP/% | FPS(1080Ti) |
---|---|---|---|---|
Faster R-CNN | ResNet-101 | VOC2007+2012 | 73.2 | 7 |
YOLO | VGG-16 | VOC2007+2012 | 66.4 | 96 |
YOLOv2 | DarkNet-19 | VOC2007+2012 | 78.6 | 80 |
SSD | VGG-16 | VOC2007+2012 | 77.2 | 120 |
DSSD | ResNet-101 | VOC2007+2012 | 78.6 | 10 |
RFB-Net | VGG-16 | VOC2007+2012 | 80.5 | 75 |
UWN | VGG-16 | VOC2007+2012 | 81.2 | 68 |
UWN | VGG-16 | Aerial photography | 82.3 | 66 |
表3 不同检测算法在VOC2007+2012下检测结果
Table 3 Test results of different methods under VOC2007+2012
Method | Backbone | Train | mAP/% | FPS(1080Ti) |
---|---|---|---|---|
Faster R-CNN | ResNet-101 | VOC2007+2012 | 73.2 | 7 |
YOLO | VGG-16 | VOC2007+2012 | 66.4 | 96 |
YOLOv2 | DarkNet-19 | VOC2007+2012 | 78.6 | 80 |
SSD | VGG-16 | VOC2007+2012 | 77.2 | 120 |
DSSD | ResNet-101 | VOC2007+2012 | 78.6 | 10 |
RFB-Net | VGG-16 | VOC2007+2012 | 80.5 | 75 |
UWN | VGG-16 | VOC2007+2012 | 81.2 | 68 |
UWN | VGG-16 | Aerial photography | 82.3 | 66 |
Data | Method | mAP/% |
---|---|---|
VOC2007+2012 | 扭曲长宽 | 78.2 |
翻转 | 78.4 | |
扭曲色域 | 78.8 | |
扭曲长宽+翻转 | 79.2 | |
扭曲长宽+扭曲色域 | 79.6 | |
扭曲色域+翻转 | 80.3 | |
本文方式 | 81.2 |
表4 样本数据在不同增强方式下的检测结果
Table 4 Test results of sample data under different enhancement
Data | Method | mAP/% |
---|---|---|
VOC2007+2012 | 扭曲长宽 | 78.2 |
翻转 | 78.4 | |
扭曲色域 | 78.8 | |
扭曲长宽+翻转 | 79.2 | |
扭曲长宽+扭曲色域 | 79.6 | |
扭曲色域+翻转 | 80.3 | |
本文方式 | 81.2 |
[1] |
REN S Q, HE K M, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI URL |
[2] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37. |
[3] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 779-788. |
[4] | FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[J]. arXiv.1701.06659, 2017. |
[5] | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 4278-4284. |
[6] | LI Z, ZHOU F. FSSD: feature fusion single shot multibox detector[J]. arXiv:1712.00960, 2017. |
[7] | ZHANG N, DONAHUE J, GIRSHICK R B, et al. Part-based R-CNNs for fine-grained category detection[C]// LNCS 8689: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 834-849. |
[8] |
HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
DOI URL |
[9] | CHENG J L, SCHARENBROICH L, BALDI P, et al. Sigmoid: a software infrastructure for pathway bioinformatics and systems biology[J]. IEEE Intelligent Systems, 2005, 20(3): 68-75. |
[10] | GAO F, YANG C G, GE Y S, et al. Dense receptive field network: a backbone network for object detection[C]// LNCS 11729: Proceedings of the 28th International Conference on Artificial Neural Networks, Munich, Sep 17-19, 2019. Cham: Springer, 2019: 105-118. |
[11] | 江雯, 陈更生, 杨帆, 等. 基于Sobel算子的自适应图像缩放算法[J]. 计算机工程, 2010, 36(7): 214-216. |
JIANG W, CHEN G S, YANG F, et al. Self-adaptive image scaling algorithm based on Sobel operator[J]. Computer Engineering, 2010, 36(7): 214-216. | |
[12] | 罗海波, 许凌云, 惠斌, 等. 基于深度学习的目标跟踪方法研究现状与展望[J]. 红外与激光工程, 2017, 46(5): 6-12. |
LUO H B, XU L Y, HUI B, et al. Status and prospect of target tracking based on deep learning[J]. Infrared and Laser Engineering, 2017, 46(5): 6-12. | |
[13] |
路雪, 刘坤, 程永翔. 一种深度学习的非机动车辆目标检测算法[J]. 计算机工程与应用, 2019, 55(8): 182-188.
DOI |
LU X, LIU K, CHENG Y X. Non-motor vehicle target detection based on deep learning[J]. Computer Engineering and Applications, 2019, 55(8): 182-188. | |
[14] |
陈幻杰, 王琦琦, 杨国威, 等. 多尺度卷积特征融合的SSD目标检测算法[J]. 计算机科学与探索, 2019, 13(6): 1049-1061.
DOI |
CHEN H J, WANG Q Q, YANG G W, et al. SSD object detection algorithm with multi-scale convolution feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(6): 1049-1061. | |
[15] | LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]// LNCS 11215: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 404-419. |
[16] |
ALY H A, DUBOIS E. Image up-sampling using total-variation regularization with a new observation model[J]. IEEE Transactions on Image Processing, 2005, 14(10): 1647-1659.
DOI URL |
[17] | 奚琦, 张正道, 彭力. 基于改进MDSSD的小目标实时检测算法[J]. 激光与光电子学进展, 2020, 57(20): 89-97. |
XI Q, ZHANG Z D, PENG L. Small target real-time detection algorithm based on improved MDSSD[J]. Laser & Optoelectronics Progress, 2020, 57(20): 89-97. | |
[18] |
ZHANG Y L, YUAN Y, FENG Y C, et al. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5535-5548.
DOI URL |
[19] |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
DOI URL |
[20] |
LIN T Y, GOYAL P, GIRSHICK R B, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
DOI URL |
[21] | WANG Z, DEDO M I, GUO K, et al. Efficient recognition of the propagated orbital angular momentum modes in turbulences with the convolutional neural network[J]. IEEE Photonics Journal, 2019, 11(3): 1-14. |
[22] |
DOLLAR P, APPEL R, BELONGIE , et al. Fast feature pyramids for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1532-1545.
DOI URL |
[23] |
陈璠, 彭力. 多层级重叠条纹特征融合的行人重识别[J]. 计算机科学与探索, 2021, 15(9): 1753-1761.
DOI |
CHEN F, PENG L. Person re-identification based on multi-level feature fusion with overlapping stripes[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1753-1761.
DOI |
[1] | 赵鹏飞, 谢林柏, 彭力. 融合注意力机制的深层次小目标检测算法[J]. 计算机科学与探索, 2022, 16(4): 927-937. |
[2] | 李科岑, 王晓强, 林浩, 李雷孝, 杨艳艳, 孟闯, 高静. 深度学习中的单阶段小目标检测方法综述[J]. 计算机科学与探索, 2022, 16(1): 41-58. |
[3] | 李玉华, 贺人贵, 钟 开, 李瑞轩. 动态加权网络中节点重要度评估[J]. 计算机科学与探索, 2012, 6(2): 134-143. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 376
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 241
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||