[1] HUANG L W, JIANG B T, LV S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647.
[2] ZHOU W Z, CAO D, XU Y F, et al. A survey of recom-mendation systems[J]. Journal of Hebei University of Sci-ence and Technology, 2020, 41(1): 76-87.
[3] WANG J Z, KONG L W, HUANG Z C, et al. The survey of graph neural network[J]. Computer Engineering, 2021, 47(4): 1-12.
[4] DEFFERRARD M, BRESSON X, VANDERGHEYNST P, et al. Convolutional neural networks on graphs with fast loca-lized spectral filtering[C]//Advances in Neural Information Processing Systems 29, Barcelona, Dec 5-10, 2016: 3844-3852.
[5] MICHELI A. Neural network for graphs: a contextual cons-tructive approach[J]. IEEE Transactions on Neural Networks, 2009, 20(3): 498-511.
[6] ATWOOD J, TOWSLEY D. Diffusion-convolutional neural networks[C]//Advances in Neural Information Processing Systems 29, Barcelona, Dec 5-10, 2016: 1993-2001.
[7] HAMILTON W L, YING R, LESKOVEC J. Inductive rep-resentation learning on large graphs[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 1024-1034.
[8] VELICKOVIC P, GUILLEM C, ARANTXA C, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[9] YU J L, YIN H Z, LI J D, et al. Self-supervised multi-channel hypergraph convolutional network for social recommen-dation[C]//Proceedings of the Web Conference 2021, Ljubl-jana, Apr 19-23, 2021. New York: ACM, 2021: 413-424.
[10] QIN C, ZHU H S, ZHUANG F Z, et al. A survey on knowledge graph-based recommender system[J]. Scientia Sinica (Informationis), 2020, 50(7): 937-956.
[11] BORDES A, USUNIER N, GARCíA-DURáN A, et al. Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems 26, Lake Tahoe, Dec 5-8, 2013: 2787-2795.
[12] LUO A G, GAO S, XU Y J. Deep semantic match model for entity linking using knowledge graph and text[J]. Pro-cedia Computer Science, 2018, 129: 110-114.
[13] WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Pro-ceedings of the World Wide Web Conference, San Fran-cisco, May 13-17, 2019. New York: ACM, 2019: 3307-3313.
[14] CHOWDHURY G, SRILAKSHMI M, CHAIN M, et al. Neural factorization for offer recommendation using know-ledge graph embeddings[C]//Proceedings of the SIGIR 2019 Workshop on eCommerce, Co-located with the 42nd Interna-tional ACM SIGIR Conference on Research and Develop-ment in Information Retrieval, Paris, Jul 25, 2019: 1-6.
[15] HU B B, SHI C, ZHAO W Y, et al. Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1531-1540.
[16] MOONEY R J, ROY L. Content-based book recommen-ding using learning for text categorization[C]//Proceedings of the 5th ACM Conference on Digital Libraries, San Anto-nio, Jun 2-7, 2000. New York: ACM, 2000: 195-204.
[17] GOLDBERG D, NICHOLS D, OKI B M, et al. Using colla-borative filtering to weave an information tapestry[J]. Com-munications of the ACM, 1992, 35(12): 61-70.
[18] MARKO B, YOAV S. Fab: content-based, collaborative reco-mmendation[J]. Communications of the ACM, 1997, 40(3): 66-72.
[19] ZHANG S, YAO L N, SUN A X, et al. Deep learning based recommender system: a survey and new perspectives[J]. ACM Computing Surveys, 2019, 52(1): 1-38.
[20] KIM D, PARK C, OH J, et al. Convolutional matrix facto-rization for document context-aware recommendation[C]//Proceedings of the 10th ACM Conference on Recommen-der Systems, Boston, Sep 15-19, 2016. New York: ACM, 2016: 233-240.
[21] BANSAL T,BELANGER D, MCCALLUM A. Ask the GRU: multi-task learning for deep text recommendations[C]//Proceedings of the 10th ACM Conference on Recom-mender Systems, Boston, Sep 7, 2016. New York: ACM, 2016: 107-114.
[22] WANG H W, ZHANG F Z, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommen-dation[C]//Proceedings of The World Wide Web Conference, San Francisco, May 13, 2019. New York: ACM, 2019: 2000-2010.
[23] JAMALI M, ESTER M. A matrix factorization technique with trust propagation for recommendation in social net-works[C]//Proceedings of the 4th ACM Conference on Reco-mmender Systems, Barcelona, Sep 23-26, 2010. New York: ACM, 2010: 135-142.
[24] WU L, SUN P J, FU Y J, et al. A neural influence diffusion model for social recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 18, 2019. New York: ACM, 2019: 235-244.
[25] FAN W Q, MA Y, LI Q, et al. A graph neural network framework for social recommendations[J]. IEEE Transac-tions on Knowledge and Data Engineering, 2022, 34(5): 2033-2047.
[26] MA H, YANG H X, LYU M R, et al. SoRec: social recom-mendation using probabilistic matrix factorization[C]//Procee-dings of the 17th ACM Conference on Information and Knowledge Management, Napa Valley, Oct 26, 2008. New York: ACM, 2008: 931-940.
[27] GUO G B, ZHANG J, YORKE-SMITH N. TrustSVD: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 123-129.
[28] FU B R, ZHANG W M, HU G N, et al. Dual side deep context-aware modulation for social recommendation[C]//Proceedings of the Web Conference 2021, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 2524-2534.
[29] SONG W P, XIAO Z P, WANG Y F, et al. Session-based social recommendation via dynamic graph attention net-works[C]//Proceedings of the 12th ACM International Con-ference on Web Search and Data Mining, Melbourne, Feb 11-15, 2019. New York: ACM, 2019: 555-563.
[30] CHEN C, ZHANG M, WANG C Y, et al. An efficient adap-tive transfer neural network for social-aware recommenda-tion[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 225-234.
[31] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
|