[1] 张宜浩, 朱小飞, 徐传运, 等. 基于用户评论的深度情感分析和多视图协同融合的混合推荐方法[J]. 计算机学报, 2019, 42(6): 1316-1333.
ZHANG Y H, ZHU X F, XU C Y, et al. Hybrid recommen-dation approach based on deep sentiment analysis of user reviews and multi-view collaborative fusion[J]. Chinese Journal of Computers, 2019, 42(6): 1316-1333.
[2] DDOMAVICIUS G, TUZHILIN A. Recommender systems handbook: content-aware recommender systems[M]. Berlin,Heidelberg: Springer, 2011.
[3] LING G, LYU M R, KING I. Ratings meet reviews, a com-bined approach to recommend[C]//Proceedings of the 8th ACM Conference on Recommender Systems, Foster City,Oct 6-10, 2014. New York: ACM, 2014: 105-112.
[4] WANG C, BLEI D M. Collaborative topic modeling for reco-mmending scientific articles[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, Aug 21-24, 2011. New York:ACM, 2011: 448-456.
[5] WANG H, WANG N, YEUNG D Y. Collaborative deep lear-ning for recommender systems[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Dis-covery and Data Mining, Sydney, Aug 10-13, 2015. New York: ACM, 2015: 1235-1244.
[6] KIM D, PARK C, OH J, et al. Convolutional matrix facto-rization for document context-aware recommendation[C]//Proceedings of the 10th ACM Conference on Recommen-der Systems, Boston, Sep 15-19, 2016. New York: ACM, 2016: 233-240.
[7] 高全力, 高岭, 杨建锋, 等. 上下文感知推荐系统中基于用户认知行为的偏好获取方法[J]. 计算机学报, 2015, 38(9): 1767-1776.
GAO Q L, GAO L, YANG J F, et al. A preference elici-tation method based on users?? cognitive behavior for context-aware recommender system[J]. Chinese Journal of Computers, 2015, 38(9): 1767-1776.
[8] VINCIARELLI A, MOHAMMADI G. A survey of persona-lity computing[J]. IEEE Transactions on Affective Compu-ting, 2014, 5(3): 273-291.
[9] FUNDER D C. Personality[J]. Annual Review of Psychol-ogy, 2001, 52(1): 197-221.
[10] KOREN Y. Factorization meets the neighborhood: a multi-faceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, Las Vegas, Aug 24-27, 2008. New York: ACM, 2008: 426-434.
[11] CHEN C M. An intelligent mobile location-aware book recommendation system that enhances problem-based learning in libraries[J]. Interactive Learning Environments, 2013, 21(5): 469-495.
[12] WEI S Y, YE N, ZHANG S, et al. Collaborative filtering recommendation algorithm based on item clustering and global similarity[C]//Proceedings of the 2012 5th Interna-tional Conference on Business Intelligence and Financial Engineering, Lanzhou, Aug 18-21, 2012. Washington: IEEE Computer Society, 2012: 69-72.
[13] CANTADOR I, CASTELLS P, BELLOGíN A. An enhanced semantic layer for hybrid recommender systems: application to news recommendation[J]. International Journal on Semantic Web and Information Systems, 2011, 7(1): 44-78.
[14] DESHPANDE M, KARYPIS G. Item-based top-n recommen-dation algorithms[J]. ACM Transactions on Information Sys-tems, 2004, 22(1): 143-177.
[15] HERLOCKER J L, KONSTAN J A, BORCHERS A, et al. An algorithmic framework for performing collaborative filte-ring[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Infor-mation Retrieval, Berkeley, Aug 15-19, 1999. New York: ACM, 1999: 230-237.
[16] MNIH A, SALAKHUTDINOV R R. Probabilistic matrix factorization[C]//Proceedings of the 20th International Con-ference on Neural Information Processing Systems, Dec 3, 2007. Red Hook: Curran Associates, 2007: 1257-1264.
[17] 郑诚, 王建. 联合注意力和自编码器的协同过滤推荐[J]. 计算机工程与应用, 2021, 57(10): 139-145.
ZHENG C, WANG J. Collaborative filtering recommen-dation for joint attention and autoencoder[J]. Computer Engineering and Applications, 2021, 57(10): 139-145.
[18] 伍鑫, 黄勃, 方志军, 等. 序列生成对抗网络在推荐系统中的应用[J]. 计算机工程与应用, 2020, 56(23): 175-179.
WU X, HUANG B, FANG Z J, et al. Application of sequence generative adversarial network in recommenda-tion system[J]. Computer Engineering and Applications, 2020, 56(23): 175-179.
[19] 李琳, 唐守廉. 基于多层注意力表示的音乐推荐模型[J]. 电子学报, 2020, 48(9): 1672.
LI L, TANG S L. Hierarchical attention representation model for music recommendation[J]. Acta Electronica Sinica, 2020, 48(9): 1672.
[20] 王立才, 孟祥武, 张玉洁. 上下文感知推荐系统[J]. 软件学报, 2012, 23(1): 1-20.
WANG L C, MENG X W, ZHANG Y J. Context-aware reco-mmender systems[J]. Journal of Software, 2012, 23(1): 1-20.
[21] ZHENG L, NOROOZI V, YU P S. Joint deep modeling of users and items using reviews for recommendation[C]//Pro-ceedings of the 10th ACM International Conference on Web Search and Data Mining. New York: ACM, 2017: 425-434.
[22] CHEN C, ZHANG M, LIU Y, et al. Neural attentional rating regression with review-level explanations[C]//Procee-dings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 1583-1592.
[23] LU Y C, DONG R H, SMYTH B. Coevolutionary recommen-dation model: mutual learning between ratings and reviews[C]//Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 773-782.
[24] CHIN J Y, ZHAO K, JOTY S, et al. ANR: aspect-based neural recommender[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 147-156.
|