[1] GHOSAL A, NANDY A, DAS A K, et al. A short review on different clustering techniques and their applications[J]. Eme-rging Technology in Modelling and Graphics, 2020, 937: 69-83.
[2] EZUGWU A E, IKOTUNA M, OYELADE O O, et al. A comprehensive survey of clustering algorithms: state-of-the-art machine learning applications, taxonomy, challenges, and future research prospects[J]. Engineering Applications of Arti-ficial Intelligence, 2022, 110: 104743.
[3] 陈梅. 面向复杂数据的聚类算法研究[D]. 兰州: 兰州大学, 2016.
CHEN M. Research on clustering algorithm for complex data[D]. Lanzhou: Lanzhou University, 2016.
[4] KRP A, DS A, GFSA B. Clustering cryo-EM images of helical protein polymers for helical reconstructions[J]. Ultramicro-scopy, 2019, 203: 132-138.
[5] NGUYEN T T, KRISHNAKUMARI P, CALVERT S C, et al. Feature extraction and clustering analysis of highway con-gestion[J]. Transportation Research Part C: Emerging Tech-nologies, 2019, 100: 238-258.
[6] CHEN Y W, HUX L, FAN W T, et al. Fast density peak clustering for large scale data based on kNN[J]. Knowledge-Based Systems, 2020, 187: 104824.
[7] 刘苏, 黄纯, 侯帅帅, 等. 基于DDTW距离与DBSCAN算法的户变关系识别方法[J]. 电力系统自动化, 2021, 45(18): 71-77.
LIU S, HUANG C, HOU S S, et al. Identification method for household-transformer relationship based on derivative dynamic time warping distance and density-based spatial clustering of application with noise algorithm[J]. Automa-tion of Electric Power Systems, 2021, 45(18): 71-77.
[8] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Proba-bility, Berkeley, Jun 21-Jul 18, 1965. Berkeley: University of California Press, 1967: 281-297.
[9] ZHANG Q P, COULOIGNER I. A new and efficient k-medoid algorithm for spatial clustering[C]//LNCS 3482: Pro-ceedings of the 2005 International Conference on Compu-tational Science and Its Applications, Singapore, May 9-12, 2005. Berlin, Heidelberg: Springer, 2005: 181-189.
[10] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial data-bases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Menlo Park: AAAI, 1996: 226-231.
[11] BHATTACHARJEE N, MITRA N. A survey of density based clustering algorithms[J]. Frontiers of Computer Science, 2021, 15(1): 139-165.
[12] ANKERST M, BREUNIG M M, KRIEGEL H P, et al. OPTICS: ordering points to identify the clustering structure[C]//Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, Jun 1-3, 1999. New York: ACM, 1999: 49-60.
[13] KARYPIS G, HAN E H, KUMAR V. Chameleon: hierarc-hical clustering using dynamic modeling[J]. IEEE Computer, 1999, 32(8): 68-75.
[14] WANG W H, YANG J J, MUNTZ R. STING: a statistical information grid approach to spatial data mining[C]//Pro-ceedings of the 23rd International Conference on Very Large Data Bases, Athens, Aug 25-29, 1997. San Francisco: Morgan Kaufmann Publishers Inc., 1997: 186-195.
[15] 万佳, 胡大裟, 蒋玉明. 多密度自适应确定DBSCAN算法参数的算法研究[J]. 计算机工程与应用, 2022, 58(2): 78-85.
WAN J, HU D S, JIANG Y M. Research on method of multi-density self-adaptive determination of DBSCAN algo-rithm parameters[J]. Computer Engineering and Applications, 2022, 58(2): 78-85.
[16] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[17] MONATH N, DUBEY K A, GURUGANESH G, et al. Scalable hierarchical agglomerative clustering[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Dis-covery and Data Mining, Singapore, Aug 14-18, 2021. New York: ACM, 2021: 1245-1255.
[18] CHEN M, WEN X F, YANG Z C, et al. MulSim: a novel similar-to-multiple-point clustering algorithm[J]. IEEE Access, 2018, 6: 78225-78237.
[19] 夏鲁宁, 荆继武. SA-DBSCAN:一种自适应基于密度聚类算法[J]. 中国科学院研究生院学报, 2009, 26(4): 530-538.
XIA L N, JING J W. SA-DBSCAN: a self-adaptive density-based clustering algorithm[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2009, 26(4): 530-538.
[20] 陈昊, 侯慧群, 杨承志, 等. SA-BFSN: 一种自适应基于密度聚类的算法[J]. 计算机工程与应用, 2012, 48(36): 186-189.
CHEN H, HOU H Q, YANG C Z, et al. SA-BFSN: adaptive algorithm based on density clustering[J]. Computer Enginee-ring and Applications, 2012, 48(36): 186-189.
[21] 钱江波, 董逸生. 一种基于广度优先搜索邻居的聚类算法[J]. 东南大学学报(自然科学版), 2004(1): 109-112.
QIAN J B, DONG Y S. A clustering algorithm based on broad first searching neighbors[J]. Journal of Southeast Uni-versity (Natural Science Edition), 2004(1): 109-112.
[22] 马淑华, 尤海荣, 唐亮, 等. 一种自适应的密度峰值聚类算法[J]. 东北大学学报(自然科学版), 2022, 43(6): 761-768.
MA S H, YOU H R, TANG L, et al. An adaptive density peak clustering algorithm[J]. Journal of Northeastern University (Natural Science), 2022, 43(6): 761-768.
[23] 周董, 刘鹏. VDBSCAN: 变密度聚类算法[J]. 计算机工程与应用, 2009, 45(11): 137-141.
ZHOU D, LIU P. VDBSCAN: variable density based clustering algorithm[J]. Computer Engineering and Applica-tions, 2009, 45(11): 137-141.
[24] 陈延伟, 赵兴旺. 基于边界点检测的变密度聚类算法[J]. 计算机应用, 2022, 42(8): 2450-2460.
CHEN Y W, ZHAO X W. Variable density clustering algo-rithm based on border point detection[J]. Computer Appli-cations, 2022, 42(8): 2450-2460.
[25] 孙璐, 梁永全. 融合网格划分和DBSCAN的改进聚类算法[J]. 计算机工程与应用, 2022, 58(14): 73-79.
SUN L, LIANG Y Q. Improved clustering algorithm fusing grid partition and DBSCAN[J]. Computer Engineering and Applications, 2022, 58(14): 73-79.
[26] BEIS J S, LOWE D G. Shape indexing using approximate nearest-neighbour search in high-dimensional spaces[C]//Proceedings of the 1997 IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Jun 17-19, 1997. Washington: IEEE Computer Society, 1997: 1000-1006. |