[1] SM A, SMM B, AL A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[2] HASHIM F A, HUSSIEN A G. Snake optimizer: a novel meta-heuristic optimization algorithm[J]. Knowledge-Based Syst-ems, 2022, 242: 108320.
[3] LI S M, CHEN H L, WANG M J, et al. Slime mould algorithm: a new method for stochastic optimization[J]. Future Generation Computer Systems, 2020, 111: 300-323.
[4] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 1-14.
[5] AAHA B, SM C, HF D, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872.
[6] ABUALIGAH L, DIABAT A, MIRJALILI S, et al. The arithmetic optimization algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 376: 113609.
[7] WOLPERT D H, MACREADY W G. No free lunch theor-ems for optimization[J]. IEEE Transactions on Evolutio-nary Computation, 1997, 1(1): 67-82.
[8] 毛清华, 张强. 融合柯西变异和反向学习的改进麻雀算法[J]. 计算机科学与探索, 2021, 15(6): 1155-1164.
MAO Q H, ZHANG Q. Improved sparrow algorithm Com-bining Cauchy mutation and opposition-based learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1155-1164.
[9] 贾鹤鸣, 姜子超, 李瑶. 基于改进秃鹰搜索算法的同步优化特征选择[J]. 控制与决策, 2022, 37(2): 445-454.
JIA H M, JIANG Z C, LI Y. Simultaneous feature selection optimization based on improved bald eagle search algorithm[J]. Control and Decision, 2022, 37(2): 445-454.
[10] 罗仕杭, 何庆. 混沌精英池协同教与学改进的ChOA及其应用[J]. 计算机工程与应用, 2023, 59(6): 299-309.
LUO S H, HE Q. Chimp optimization algorithm improved by chaos elite pool collaborative teaching-learning and its mechanical application[J]. Computer Engineering and Applications, 2023, 59(6): 299-309.
[11] 魏伟一, 文雅宏. 一种精英反向学习的萤火虫优化算法[J]. 智能系统学报, 2017, 12(5): 710-716.
WEI W Y, WEN Y H. Firefly optimization algorithm utilizing elite opposition-based learning[J]. CAAI Transa-ctions on Intelligent Systems, 2017, 12(5): 710-716.
[12] 孙成硕, 戚志东, 叶伟琴, 等. 变异反向学习的自适应帝王蝶优化算法[J]. 计算机工程与应用, 2022, 58(11): 66-72.
SUN C S, QI Z D, YE W Q, et al. Adaptive monarch butterfly algorithm based on mutation reverse learning[J]. Computer Engineering and Applications, 2022, 58(11): 66-72.
[13] ZHANG H, WANG Z, CHEN W, et al. Ensemble mutation-driven salp swarm algorithm with restart mechanism: framework and fundamental analysis[J]. Expert Systems with Applications, 2021, 165: 113897.
[14] 贾鹤鸣, 刘宇翔, 刘庆鑫, 等. 融合随机反向学习的黏菌与算术混合优化算法[J]. 计算机科学与探索, 2022, 16(5): 1182-1192.
JIA H M, LIU Y X, LIU Q X, et al. Hybrid algorithm of slime mould algorithm and arithmetic optimization algori-thm based on random opposition-based learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1182-1192.
[15] 宋飞, 夏克文, 杨文彪. 融合多策略的鸟群算法及油层识别ELM模型优化[J]. 计算机工程与应用, 2022, 58(9): 279-287.
SONG F, XIA K W, YANG W B. Mix with multiple strategies bird swarm algorithm and optimization of ELM model in oil layer classification[J]. Computer Engineering and Applications, 2022, 58(9): 279-287.
[16] 张晗, 杨继斌, 张继业, 等. 基于多种群萤火虫算法的车载燃料电池直流微电网能量管理优化[J]. 中国电机工程学报, 2021, 41(3): 833-846.
ZHANG H, YANG J B, ZHANG J Y, et al. Multiple-population firefly algorithm-based energy management stra-tegy for vehicle-mounted fuel cell DC microgrid[J]. Proce-edings of the CSEE, 2021, 41(3): 833-846.
[17] JIA H M, PENG X X, LANG C B. Remora optimization algorithm[J]. Expert Systems with Applications, 2021, 185(9): 15665.
[18] LIU Q X, LI N, JIA H M, et al. Modified remora optim-ization algorithm for global optimization and multi-level thresholding image segmentation[J]. Mathematics, 2022, 10: 1014.
[19] ZHENG R, JIA H M, ABUALIGAH L, et al. An improved remora optimization algorithm with autonomous foraging mechanism for global optimization problems[J]. Mathe-matical Biosciences and Engineering, 2022, 19(4): 3994-4037.
[20] ZHONG C, LI G, MENG Z. Beluga whale optimization: a novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems, 2022, 251: 109215.
[21] ARINI F Y, CHIEWCHANWATTANA S, SOOMLEK C, et al. Joint opposite selection (JOS): a premiere joint of selective leading opposition and dynamic opposite enhanced Harris?? hawks optimization for solving single-objective problems[J]. Expert Systems with Applications, 2022, 188: 116001.
[22] DHARGUPTA S, GHOSH M, MIRJALILI S, et al. Sele-ctive opposition based grey wolf optimization[J]. Expert Systems with Applications, 2020, 151: 113389.
[23] MANDAL B, ROY P K. Optimal reactive power dispatch using quasi-oppositional teaching learning based optimiz-ation[J]. International Journal of Electrical Power & Energy Systems, 2013, 53: 123-134.
[24] FAN Q, CHEN Z, XIA Z. A novel quasi-reflected Harris hawks optimization algorithm for global optimization prob-lems[J]. Soft Computing, 2020, 24(19): 14825-14843.
[25] ALSATTAR H A, ZAIDAN A A, ZAIDAN B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review, 2020, 53(6): 2237-2264.
[26] ABUALIGAH L, ELAZIZ M A, SUMARI P, et al. Reptile search algorithm (RSA): a novel nature-inspired meta-heuristic optimizer[J]. Expert Systems with Applications, 2022, 191: 116158.
[27] BRAIK M, HAMMOURI A, ATWAN J, et al. White shark optimizer: a novel bio-inspired meta-heuristic algorithm for global optimization problems[J]. Knowledge-Based Systems, 2022, 243: 108457 .
[28] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]//Proceedings of the 2005 Inter-national Conference on Computational Intelligence for Modelling Control and Automation, International Confe-rence on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Nov 28-30, 2005. Washington: IEEE Computer Society, 2005: 695-701.
[29] WANG S, HUSSIEN A G, JIA H, et al. Enhanced remora optimization algorithm for solving constrained engineering optimization problems[J]. Mathematics, 2022, 10(10): 1696.
[30] WANG S, RAO H, WEN C, et al. Improved remora optimization algorithm with mutualistic strategy for solving constrained engineering optimization problems[J]. Processes, 2022, 10(12): 2606.
[31] WU D, RAO H, WEN C, et al. Modified sand cat swarm optimization algorithm for solving constrained engine-ering optimization problems[J]. Mathematics, 2022, 10(22): 4350.
[32] FARNAD B, JAFARIAN A. A new nature-inspired hybrid algorithm with a penalty method to solve constrained problem[J]. International Journal of Computational Meth-ods, 2018, 15(8): 1850069. |