[1] 洪惠群, 沈贵萍, 黄风华. 表情识别技术综述[J]. 计算机科学与探索, 2022, 16(8): 1764-1778.
HONG H Q, SHEN G P, HUANG F H. Summary of expression recognition technology[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1764-1778.
[2] 邵志文, 周勇, 马利庄, 等. 基于深度学习的表情动作单元识别综述[J]. 电子学报, 2022, 50(8): 2003-2017.
SHAO Z W, ZHOU Y, MA L Z, et al. Survey of expression action unit recognition based on deep learning[J]. Acta Electronica Sinica, 2022, 50(8): 2003-2017.
[3] DURIC Z, GRAY W D, HEISHMAN R, et al. Integrating perceptual and cognitive modeling for adaptive and intel-ligent human-computer interaction[J]. Proceedings of the IEEE, 2002, 90(7): 1272-1289.
[4] LI B, MEHTA S, ANEJA D, et al. A facial affect analysis system for autism spectrum disorder[C]//Proceedings of the 2019 IEEE International Conference on Image Processing, Taipei, China,Sep 22-25, 2019. Piscataway: IEEE, 2019: 4549-4553.
[5] JEONG M, KO B C. Driver’s facial expression recognition in real-time for safe driving[J]. Sensors, 2018, 18(12): 4270.
[6] LUCEY P, COHN J F, KANADE T, et al. The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression[C]//Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010. Washington: IEEE Computer Society,2010: 94-101.
[7] VALSTAR M, PANTIC M. Induced disgust, happiness and surprise: an addition to the mmi facial expression database[C]//Proceedings of the 3rd Workshop on EMOTION, 2010: 65-70.
[8] LYONS M, AKAMATSU S, KAMACHI M, et al. Coding facial expressions with gabor wavelets[C]//Proceedings of the 3rd International Conference on Face & Gesture Recog-nition, Nara, Apr 14-16, 1998. Washington: IEEE Computer Society, 1998: 200-205.
[9] LI S, DENG W, DU J P. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2584-2593.
[10] MOLLAHOSSEINI A, HASANI B, MAHOOR M H. Affect-Net: a database for facial expression, valence, and arousal computing in the wild[J]. IEEE Transactions on Affective Computing, 2017, 10(1): 18-31.
[11] GOODFELLOW I J, ERHAN D, CARRIER P L, et al. Chal-lenges in representation learning: a report on three machine learning contests[C]//LNCS 8228: Proceedings of the 20th International Conference on Neural Information Processing, Daegu, Nov 3-7, 2013: 117-124.
[12] DRUMMOND C, HOLTE R C. C4.15, class imbalance, and cost sensitivity: why under-sampling beats over-sampling[C]//Proceedings of the 2003 Workshop on Learning from Imbalanced Datasets II, Washington, Aug 21, 2003: 1-8.
[13] BUDA M, MAKI A, MAZUROWSKI M A. A systematic study of the class imbalance problem in convolutional neural networks[J]. Neural Networks, 2018, 106: 249-259.
[14] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
[15] HAN H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]//LNCS 3644: Proceedings of the 2005 International Conference on Intelligent Computing, Hefei, Aug 23-26, 2005: 878-887.
[16] HUANG C, LI Y, LOY C C, et al. Learning deep represen-tation for imbalanced classification[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 5375-5384.
[17] WANG Y X, RAMANAN D, HEBERT M. Learning to model the tail[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Dec 4-9, 2017: 7029-7039.
[18] MALISIEWICZ T, GUPTA A, EFROS A A. Ensemble of exemplar-SVMs for object detection and beyond[C]//Pro-ceedings of the 2011 International Conference on Computer Vision, Barcelona, Nov 6-13, 2011. Washington: IEEE Com-puter Society, 2011: 89-96.
[19] DONG Q, GONG S, ZHU X. Class rectification hard mining for imbalanced deep learning[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 1869-1878.
[20] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2999-3007.
[21] CUI Y, JIA M, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recog-nition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 9268-9277.
[22] KANG B, XIE S, ROHRBACH M, et al. Decoupling repre-sentation and classifier for long-tailed recognition[C]//Pro-ceedings of the 8th International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020: 1-19.
[23] REN M, ZENG W, YANG B, et al. Learning to reweight examples for robust deep learning[C]//Proceedings of the 35th International Conference on Machine Learning, Stock-holm, Jul 10-15, 2018: 4331-4340.
[24] DHALL A, RAMANA MURTHY O V, GOECKE R, et al. Video and image based emotion recognition challenges in the wild: EmotiW 2015[C]//Proceedings of the 2015 ACM International Conference on Multimodal Interaction, Seattle, May 15, 2015. New York: ACM, 2015: 423-426.
[25] LEE J, KIM S, KIM S, et al. Context-aware emotion recog-nition networks[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 10143-10152.
[26] KOH P W, LIANG P. Understanding black-box predictions via influence functions[C]//Proceedings of the 34th Interna-tional Conference on Machine Learning, Sydney, Aug 6-11, 2017: 1885-1894.
[27] SHE J, HU Y, SHI H, et al. Dive into ambiguity: latent dis-tribution mining and pairwise uncertainty estimation for facial expression recognition[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recog-nition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 6248-6257.
[28] 黄浩, 葛洪伟. 强化类间区分的深度残差表情识别网络[J]. 计算机科学与探索, 2022, 16(8): 1842-1849.
HUANG H, GE H W. Deep residual expression recognition network to enhance inter-class discrimination[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1842-1849.
[29] DENG J, GUO J, VERVERAS E, et al. Retinaface: single-shot multi-level face localisation in the wild[C]//Procee-dings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 5203-5212.
[30] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[31] GUO Y, ZHANG L, HU Y, et al. MS-CELEB-1M: a dataset and benchmark for large-scale face recognition[C]//LNCS 9907: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Sprin-ger, 2016: 87-102.
[32] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
[33] WANG K, PENG X, YANG J, et al. Suppressing uncertain-ties for large-scale facial expression recognition[C]//Procee-dings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Pis-cataway: IEEE, 2020: 6897-6906.
[34] ZHAO Z, LIU Q, ZHOU F. Robust lightweight facial expres-sion recognition network with label distribution training[C]//Proceedings of the 35th AAAI Conference on Artifi-cial Intelligence, the 33rd Conference on Innovative Appli-cations of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 3510-3519.
[35] ZHANG Y, WANG C, DENG W. Relative uncertainty learning for facial expression recognition[C]//Advances in Neural Information Processing?Systems?34,?Dec?6-14, 2021: 17616-17627.
[36] RUAN D, YAN Y, CHEN S, et al. Deep disturbance-disen-tangled learning for facial expression recognition[C]//Pro-ceedings of the 28th ACM International Conference on Multimedia, Seattle, Oct 12-16, 2020. New York: ACM, 2020: 2833-2841.
[37] WEN Z, LIN W, WANG T, et al. Distract your attention: multi-head cross attention network for facial expression recognition[J]. arXiv:2109.07270, 2021.
[38] CAI J, MENG Z, KHAN A S, et al. Island loss for learning discriminative features in facial expression recognition[C]//Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition, Xi??an, May 15-19, 2018. Washington: IEEE Computer Society, 2018: 302-309.
[39] ACHARYA D, HUANG Z, PANI PAUDEL D, et al. Cova-riance pooling for facial expression recognition[C]//Procee-dings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 367-374.
[40] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(2): 652-662.
[41] LI H, WANG N, DING X, et al. Adaptively learning facial expression representation via CF labels and distillation[J]. IEEE Transactions on Image Processing, 2021, 30: 2016-2028.
[42] VO T H, LEE G S, YANG H J, et al. Pyramid with super resolution for in-the-wild facial expression recognition[J]. IEEE Access, 2020, 8: 131988-132001.
[43] GROSS R, MATTHEWS I, COHN J, et al. Multi-PIE[J]. Image and Vision Computing, 2010, 28(5): 807-813. |