[1] 刘建伟, 刘媛, 罗雄麟. 半监督学习方法[J]. 计算机学报, 2015, 38(8): 1592-1617.
LIU J W, LIU Y, LUO X L. Semi-supervised learning me-thods[J]. Chinese Journal of Computers, 2015, 38(8): 1592-1617.
[2] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th In-ternational Conference on Neural Information Processing Systems, Montreal, Dec 8-13, 2014. Red Hook: Curran As-sociates, 2014: 2672-2680.
[3] DING M, TANG J, ZHANG J. Semi-supervised learning on graphs with generative adversarial nets[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 913-922.
[4] SEN P, NAMAT G, BILGIC M, et al. Collective classification in network data[J]. AI Magazine, 2008, 29(3): 93-106.
[5] KINGMA D P, MOHAMED S, REZENDE D J, et al. Semi-supervised learning with deep generative models[C]//Procee-dings of the 27th Advances in Neural Information Proces-sing Systems, Montreal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 3581-3589.
[6] SINDHWANI V, SATHIYA KEERTHI S. Large scale semi-supervised linear SVMs[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and De-velopment in Information Retrieval, Washington, Aug 6-11, 2006. New York: ACM, 2006: 477-484.
[7] 周志华. 基于分歧的半监督学习[J]. 自动化学报, 2013, 39(11): 1871-1878.
ZHOU Z H. Disagreement-based semi-supervised learning[J]. Acta Automatica Sinica, 2013, 39(11): 1871-1878.
[8] HE J R, CARBONELL J G, LIU Y. Graph-based semi-supervised learning as a generative model[C]//Proceedings of the 20th International Joint Conference on Artificial Intel-ligence, Hyderabad, Jan 6-12, 2007. Menlo Park: AAAI, 2007: 2492-2497.
[9] 刘钰峰, 李仁发. 异构信息网络上基于图正则化的半监督学习[J]. 计算机研究与发展, 2015, 52(3): 606-613.
LIU Y F, LI R F. Graph regularized semi-supervised lear-ning on heterogeneous information networks[J]. Journal of Computer Research and Development, 2015, 52(3): 606-613.
[10] 侯臣平, 吴翊, 易东云. 新的流形学习方法统一框架及改进的拉普拉斯特征映射方法[J]. 计算机研究与发展, 2009, 46(4): 676-682.
HOU C P, WU Y, YI D Y. A novel unified manifold lear-ning framework and an improved Laplacian Eigenmap[J]. Journal of Computer Research and Development, 2009, 46(4): 676-682.
[11] ZHOU D Y, BOUSQUET O, WESTON J, et al. Learning with local and global consistency[C]//Proceedings of the 16th Advances in Neural Information Processing Systems, Vancouver and Whistler, Dec 8-13, 2003. Cambridge: MIT Press, 2004: 321-328.
[12] ZHU X J, GHAHRAMANI Z, LAFFERTY J D. Semi-supervised learning using Gaussian fields and harmonic func-tions[C]//Proceedings of the 20th International Conference on Machine Learning, Washington, Aug 21-24, 2003. Menlo Park: AAAI, 2003: 912-919.
[13] BELKIN M, NIYOGIi P, SINDHEANI V. Manifold regula-rization: a geometric framework for learning from labeled and unlabeled examples[J]. Journal of Machine Learning Research, 2006, 7(11): 2399-2434.
[14] 温雯, 黄家明, 蔡瑞初, 等. 一种融合节点先验信息的图表示学习方法[J]. 软件学报, 2018, 29(3): 786-798.
WEN W, HUANG J M, CAI R C, et al. Graph embedding by incorporating prior knowledge on vertex information[J]. Journal of Software, 2018, 29(3): 786-798.
[15] WESTON J, RATLE F, MOBAHI H, et al. Deep learning via semi-supervised embedding[M]//MONTAVON G, ORR G B, MüLLER K R. 2nd ed. LNCS 7700: Neural Networks: Tricks of the Trade. Berlin, Heidelberg: Springer, 2012: 639-655.
[16] YANG Z L, COHEN W W, SALAKHUDINOV R. Revisi-ting semi-supervised learning with graph embeddings[C]//Proceedings of the 33rd International Conference on Ma-chine Learning, New York, Jun 19-24, 2016: 40-48.
[17] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710.
[18] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-14.
[19] GAN Z, CHEN L Q, WANG W Y, et al. Triangle generative adversarial networks[C]//Proceedings of the 30th Advances in Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5247-5256.
[20] ODENA A. Semi-supervised learning with generative adver-sarial networks[J]. arXiv:1606.01583, 2016.
[21] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Im-proved techniques for training GANs[C]//Proceedings of the 29th Advances in Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 2226-2234.
[22] LI C X, XU T, ZHU J, et al. Triple generative adversarial nets[C]//Proceedings of the 30th Advances in Neural Infor-mation Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 4088-4098.
[23] DAI Z H, YANG Z L, YANG F, et al. Good semi-supervised learning that requires a bad GAN[C]//Proceedings of the 30th Advances in Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 6510-6520.
[24] YANG C, LIU Z Y, ZHAO D L, et al. Network representa-tion learning with rich text information[C]//Proceedings of the 24th International Joint Conference on Artificial Intelli-gence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 2111-2117.
[25] LU Q, GETOOR L. Link-based classification[C]//Proceedings of the 20th International Conference on Machine Learning, Washington, Aug 21-24, 2003. Menlo Park: AAAI, 2003: 496-503.
[26] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th Advances in Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 3837-3845. |