[1] MEDHATW, HASSAN A, KORASHY H. Sentiment analy-sis algorithms and applications: a survey[J]. Ain Shams Engineering Journal, 2014, 5(4): 1093-1113.
[2] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. Sem-Eval-2014 Task 4: aspect based sentiment analysis[C]//Pro-ceedings of the 8th International Workshop on Semantic Evaluation, Dublin, Aug 23-24, 2014. Stroudsburg: ACL, 2014:?27-35.
[3] BOIY E, MOENS M F. A machine learning approach to sen-timent analysis in multilingual Web texts[J]. Information Retrieval, 2009, 12(5): 526-558.
[4] KIM Y. Convolutional neural networks for sentence classifi-cation[C]//Proceedings of the 2014 Conference on Empiri-cal Methods in Natural Language Processing, Doha, Oct 5-29, 2014. Stroudsburg: ACL, 2014: 1746-1751.
[5] WANG S, MAZUMDER S, LIU B, et al. Target-sensitive me-mory networks for aspect sentiment classification[C]//Pro-ceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroud-sburg: ACL, 2018: 957-967.
[6] MA D H, LI S J, ZHANG X D, et al. Interactive attention net-works for aspect-level sentiment classification[C]//Procee-dings of the 26th International Joint Conference on Artifi-cial Intelligence, Melbourne, Aug 19-25, 2017: 4068-4074.
[7] TAY Y, TUAN L A, HUI S C. Learning to attend via word-aspect associative fusion for aspect-based sentiment analy-sis[C]//Proceedings of the 2018 AAAI Conference on Artifi-cial Intelligence, New Orleans, Feb 2-7, 2018. Palo Alto: AAAI, 2018: 5956-5963.
[8] YAO L, MAO C S, LUO Y. Graph convolutional networks for text classification[C]//Proceedings of the 33rd AAAI Confe-rence on Artificial Intelligence, the 31st Innovative Applica-tions of Artificial Intelligence Conference, the 9th AAAI Sympo-sium on Educational Advances in Artificial Intelligence, Hono-lulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 7370-7377.
[9] SHAFIE A S, SHAREF N M, MURAD M A A, et al. Aspect extraction performance with POS tag pattern of depen-dency relation in aspect-based sentiment analysis[C]//Pro-ceedings of the 2018 4th International Conference on Infor-mation Retrieval and Knowledge Management, Kota Kina-balu, Mar 26-28, 2018.?Piscataway: IEEE, 2018: 107-112.
[10] ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional net-works[C]//Proceedings of the 2019 Conference on Empiri-cal Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Proces-sing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 4567-4577.
[11] CHEN J D, HU Y Z, LIU J P, et al. Deep short text clas-sification with knowledge powered attention[C]//Procee-dings of the 33rd AAAI Conference on Artificial Intel-ligence, the 31st Innovative Applications of Artificial Intelli-gence Conference, the 9th AAAI Symposium on Educa-tional Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 6252-6259.
[12] BIAN X O, FENG C, AHMAD A, et al. Targeted sentiment classification with knowledge powered attention network[C]//Proceedings of the 31st IEEE International Conference on Tools with Artificial Intelligence, Portland, Nov 4-6, 2019. Piscataway: IEEE, 2019: 1073-1080.
[13] TAI K S, SOCHER R, MANNING C D. Improved seman-tic representations from tree-structured long short-term me-mory networks[C]//Proceedings of the 53rd Annual Mee-ting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 1556-1566.
[14] YANG M, TU W, WANG J, et al. Attention-based LSTM for target-dependent sentiment classification[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 5013-5014.
[15] TANG D Y, QIN B, LIU T. Aspect level sentiment clas-sification with deep memory network[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 214-224.
[16] SUN K, ZHANG R, MENSAH S, et al. Aspect-level senti-ment analysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 5683-5692.
[17] ZHANG M, QIAN T. Convolution over hierarchical syntac-tic and lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Me-thods in Natural Language Processing. Stroudsburg: ACL, 2020: 3540-3549.
[18] TIAN Y H, CHEN G M, SONG Y. Enhancing aspect-level sentiment analysis with word dependencies[C]//Procee-dings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Vo-lume. Stroudsburg: ACL, 2021: 3726-3739.
[19] HU L M, YANG T C, SHI C, et al. Heterogeneous graph attention networks for semi-supervised short text classifica-tion[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Proces-sing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 4820-4829.
[20] JI L, WANG Y J, SHI B T, et al. Microsoft concept graph: mining semantic concepts for short text understanding[J]. Data Intelligence, 2019, 1(3): 238-270.
[21] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a large ontology from Wikipedia and WordNet[J]. Journal of Web Semantics, 2008, 6(3): 203-217.
[22] MILLER G A. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41.
[23] DONG L, WEI F R, TAN C Q, et al. Adaptive recursive neural network for target-dependent Twitter sentiment clas-sification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, Jun 23-25, 2014. Stroudsburg: ACL, 2014: 49-54.
[24] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. Semeval-2015 Task 12: aspect based sentiment analysis[C]//Proceedings of the 9th International Workshop on Semantic Evaluation, Denver, Jun 4-5, 2015. Stroudsburg: ACL, 2015: 486-495.
[25] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al.SemEval-2016 Task 5: aspect based sentiment analysis[C]//Proceedings of the 10th International Workshop on Se-mantic, Evaluation, San Diego, Jun 16-17, 2016. Stroudsburg: ACL, 2016: 19-30.
[26] PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1532-1543.
[27] TANG D Y, QIN B, FENG X C, et al. Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the 26th International Conference on Computational Lin-guistics: Technical Papers, Osaka, Dec 11-17, 2016. Strouds-burg: ACL, 2016: 3298-3307. |