[1] WANG S, CAO L, WANG Y, et al. A survey on session-based recommender systems[J]. ACM Computing Surveys, 2021, 54(7): 1-38.
[2] WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Net-works and Learning Systems, 2020, 32(1): 4-24.
[3] XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[J]. arXiv:1810.00826, 2018.
[4] WU S, TANG Y Y, ZHU Y Q, et al. Session-based recommen-dation with graph neural networks[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Arti-ficial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 346-353.
[5] ZHANG C, SONG D, HUANG C, et al. Heterogeneous graph neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug 4-8, 2019. New York: ACM, 2019: 793-803.
[6] ZHANG J, LIN Y, LIN M, et al. An effective collaborative filtering algorithm based on user preference clustering[J]. Applied Intelligence, 2016, 45(2): 230-240.
[7] RENDLE S, KRICHENE W, ZHANG L, et al. Neural colla-borative filtering vs. matrix factorization revisited[C]//Procee-dings of the 14th ACM Conference on Recommender Systems, Brazil, Sep 22-26, 2020. New York: ACM, 2020: 240-248.
[8] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[J]. arXiv:1205.2618, 2012.
[9] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[J]. arXiv:1511.06939, 2015.
[10] XU C, ZHAO P, LIU Y, et al. Graph contextualized self-attention network for session-based recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019. San Francisco: Morgan Kaufmann, 2019: 3940-3946.
[11] QIU R H, HUANG Z, LI J J, et al. Exploiting cross-session information for session-based recommendation with graph neural networks[J]. ACM Transactions on Information Systems, 2020, 38(3): 1-23.
[12] FAN Z W, LIU Z W, ZHANG J W, et al. Continuous-time sequential recommendation with temporal graph collaborative transformer[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Queens-land, Nov 1-5, 2021. New York: ACM, 2021: 433-442.
[13] WANG Z Y, WEI W, CONG G, et al. Global context enhanced graph neural networks for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Con-ference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 169-178.
[14] YU B, ZHANG R, CHEN W, et al. Graph neural network based model for multi-behavior session-based recommendation[J]. GeoInformatica, 2022, 26(4): 429-447.
[15] YANG D Q, WANG Z Y, JIANG J Y, et al. Knowledge embed-ding towards the recommendation with sparse user-item in-teractions[C]//Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, Aug 27-30, 2019. New York: ACM, 2019: 325-332.
[16] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710.
[17] DONG Y X, CHAWLA N V, SWAMI A. metapath2vec: scala-ble representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Con-ference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 135-144.
[18] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 855-864.
[19] TANG J, QU M, WANG M Z, et al. LINE: large-scale infor-mation network embedding[C]//Proceedings of the 24th In-ternational Conference on World Wide Web, Florence, May 18-22, 2015. New York: ACM, 2015: 1067-1077.
[20] LIAO L, HE X, ZHANG H, et al. Attributed social network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(12): 2257-2270.
[21] SUN Y, HAN J, YAN X, et al. PathSim: meta path-based top-k similarity search in heterogeneous information networks[J]. Proceedings of the VLDB Endowment, 2011, 4(11): 992-1003.
[22] SUN Y, NORICK B, HAN J, et al. PathSelClus: integrating meta-path selection with user-guided object clustering in hetero-geneous information networks[J]. ACM Transactions on Know-ledge Discovery from Data , 2013, 7(3): 1-23.
[23] REN X, LIU J L, YU X, et al. ClusCite: effective citation recommendation by information network-based clustering[C]//Proceedings of the 20th ACM SIGKDD International Con-ference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 821-830.
[24] HU B B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1531-1540. |