[1] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647.
HUANG L W, JIANG B T, LV S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647.
[2] 吴宾, 娄铮铮, 叶阳东. 一种面向多源异构数据的协同过滤推荐算法[J]. 计算机研究与发展, 2019, 56(5): 1034-1047.
WU B, LOU Z Z, YE Y D. A collaborative filtering recommendation algorithm for heterogeneous data[J]. Journal of Computer Research and Development, 2019, 56(5): 1034-1047.
[3] 尚燕敏, 曹亚男, 刘燕兵. 基于异构社交网络信息和内容信息的事件推荐[J]. 软件学报, 2020, 31(4): 1212-1224.
SHANG Y M, CAO Y N, LIU Y B. Based on hetero-geneous network information and content information of the event recommendation[J]. Journal of Software, 2020, 31(4): 1212-1224.
[4] 葛尧, 陈松灿. 面向推荐系统的图卷积网络[J]. 软件学报, 2020, 31(4): 1101-1112.
GE Y, CHEN S C. Recommendation system oriented graph convolution network[J]. Journal of Software, 2020, 31(4): 1101-1112.
[5] DONG Y, HU Z, WANG K, et al. Heterogeneous network representation learning[C]//Proceedings of the 29th Intern-ational Joint Conference on Artificial Intelligence, Yokoh-ama, Jan 7-15, 2021: 4861-4867.
[6] WANG X, JI H, SHI C, et al. Heterogeneous graph atten-tion network[C]//Proceedings of the World Wide Web Conference 2019, San Francisco, May 13-17, 2019. New York: ACM, 2019: 2022-2032.
[7] CHEN H, LI Y, SUN X, et al. Temporal meta-path guided explainable recommendation[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Israel, Mar 8-12, 2021. New York: ACM, 2021: 1056-1064.
[8] 宋蕊, 李童, 董鑫, 等. 基于元路径嵌入的移动应用需求偏好分析方法[J]. 计算机研究与发展, 2021, 58(4): 749-762.
SONG R, LI T, DONG X, et al. Mobile application demand preference analysis method based on meta-path embedding[J]. Journal of Computer Research and Development, 2021, 58(4): 749-762.
[9] YANG H, CHEN H, LI L, et al. Hyper meta-path contras-tive learning for multi-behavior recommendation[C]//Proc-eedings of the 2021 IEEE International Conference on Data Mining, Auckland, Dec 7-10, 2021. Piscataway: IEEE, 2021: 787-796.
[10] ZHANG J, ZHU Y. Meta-path guided heterogeneous graph neural network for dish recommendation system[J]. Journal of Physics: Conference Series, 2021, 1883(1): 012102.
[11] LIU Y, YIN C, LI J, et al. Predicting dynamic user-item interaction with meta-path guided recursive RNN[J]. Algor-ithms, 2022, 15(3): 80.
[12] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[13] HAMILTON W L, YING R, LESKOVEC J. Inductive repre- sentation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Proce-ssing Systems, Long Beach, Dec 4-9, 2017: 1025-1035.
[14] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[15] PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowle-dge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710.
[16] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 855-864.
[17] DONG Y, CHAWLA N V, SWAMI A. metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 135-144.
[18] HE R, MCAULEY J. Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filt-ering[C]//proceedings of the 25th International Conference on World Wide Web, Montreal, Apr 11-15, 2016. New York: ACM, 2016: 507-517.
[19] TANG L, LIU H. Uncovering cross-dimension group stru-ctures in multi-dimensional networks[C]//Proceedings of the 2009 SDM Workshop on Analysis of Dynamic Net-works, 2009: 568-575.
[20] CEN Y, ZOU X, ZHANG J, et al. Representation learning for attributed multiplex heterogeneous network[C]//Proce-edings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 1358-1368.
[21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Proce-ssing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017: 5998- 6008. |