计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (9): 2030-2046.DOI: 10.3778/j.issn.1673-9418.2301068
张冰洁,杨彦红,曹少中
出版日期:
2023-09-01
发布日期:
2023-09-01
ZHANG Bingjie, YANG Yanhong, CAO Shaozhong
Online:
2023-09-01
Published:
2023-09-01
摘要: 物联网盛行背景下海量大规模机器通信时代的发展带来数据流量的爆炸式增长,传统的云计算模式不再满足终端数据处理低时延和低能耗的需求,靠近终端侧分布式多节点的多接入边缘计算(MEC)正在成为解决该问题的最佳选择。计算卸载作为MEC的关键技术,卸载性能受多种因素的影响,存在很大的优化空间,如何设计出高性能的计算卸载方案成为国内外学者主要的研究目标。综述了面向MEC的计算卸载方案,介绍了MEC的概念,梳理了MEC的发展与应用、计算卸载的执行过程,对近期关于计算卸载的研究方法进行分析对比,针对不同的改进,归纳总结出以计算卸载系统环境和计算卸载时延、移动设备能耗以及综合多个评价指标为优化方向的计算卸载方案。提出当前面向MEC的计算卸载存在的资源分配问题、通用性与安全性问题,并且基于现有的这些问题展望了未来研究方向。
张冰洁, 杨彦红, 曹少中. 面向多接入边缘计算的计算卸载方案研究综述[J]. 计算机科学与探索, 2023, 17(9): 2030-2046.
ZHANG Bingjie, YANG Yanhong, CAO Shaozhong. Review of Computing Offloading Schemes for Multi-access Edge Computing[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2030-2046.
[1] 施巍松, 张星洲, 王一帆, 等. 边缘计算: 现状与展望[J]. 计算机研究与发展, 2019, 56(1): 69-89. SHI W S, ZHANG X Z, WANG Y F, et al. Edge compu-ting: state-of-the-art and future directions[J]. Journal of Com-puter Research and Development, 2019, 56(1): 69-89. [2] 许慕鸿, 张蕊. MEC产业发展分析研究[J]. 信息通信技术与政策, 2021, 47(7): 76-81. XU M H, ZHANG R. Analysis and research on MEC industry development[J]. Information and Communications Technology and Policy, 2021, 47(7): 76-81. [3] SHI W S, CAO J, ZHANG Q, et al. Edge computing: vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637-646. [4] ETSI. Mobile-edge computing introductory technical white paper[EB/OL]. [2022-05-16]. https://networkbuilders.intel.com/. [5] Edge X foundry documentation[EB/OL]. [2022-04-19]. https://www.edgexfoundry.org. [6] 边缘计算产业联盟(ECC)与工业互联网产业联盟(AII). 边缘计算参考架构[EB/OL]. [2022-04-19]. http://www.ecconsortium.org/Lists/show/id/334.html. Edge Computing Consortium (ECC) and Alliance of Indu-strial Internet (AII). Edge computing reference architecture[EB/OL]. [2022-04-19]. http://www.ecconsortium.org/Lists/show/id/334.html. [7] ROMAN R, LóPEZ J, MAMBO M. Mobile edge compu-ting, Fog et al.: a survey and analysis of security threats and challenges[J]. Future Generation Computer Systems, 2018, 78: 680-698. [8] Nearly 12% of global mobile data to ride 5G networks by 2022—Cisco study[EB/OL]. [2022-04-18]. https://www.lightreading.com/mobile/5g. [9] Data never sleeps 2.0[EB/OL]. [2022-04-21]. https://www.domo.com/blog/2014/04/data-never-sleeps-2-0/. [10] JIN X M, HUA W Q, WANG Z M, et al. A survey of research on computation offloading in mobile cloud computing[J]. Wireless Networks, 2022, 28(4): 1563-1585. [11] LI W J, CHEN Z Y, GAO X Y, et al. Multimodel frame-work for indoor localization under mobile edge computing environment[J]. IEEE Internet of Things Journal, 2019, 6(3): 4844-4853. [12] YI S H, HAO Z J, QIN Z R, et al. Fog computing: platform and applications[C]//Proceedings of the 3rd IEEE Work-shop on Hot Topics in Web Systems and Technologies, Wa-shington, Nov 12-13, 2015. Washington: IEEE Computer Society, 2015: 73-78. [13] HA K, CHEN Z, HU W L, et al. Towards wearable cognitive assistance[C]//Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, Bretton Woods, Jun 16-19, 2014. New York: ACM, 2014: 68-81. [14] YUAN Q, ZHOU H B, LI J L, et al. Toward efficient content delivery for automated driving services: an edge computing solution[J]. IEEE Network, 2018, 32(1): 80-86. [15] GONG W J, QI L Y, XU Y W. Privacy-aware multidimen-sional mobile service quality prediction and recommenda-tion in distributed fog environment[J]. Wireless Communi-cations and Mobile Computing, 2018: 3075849. [16] CHEN X, LI W Z, LU S L, et al. Efficient resource alloca-tion for on-demand mobile-edge cloud computing[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8769-8780. [17] 王妍, 葛海波, 冯安琪. 云辅助移动边缘计算中的计算卸载策略[J]. 计算机工程, 2020, 46(8): 27-34. WANG Y, GE H B,FENG A Q. Computation offloading strategy in cloud-assisted mobile edge computing[J]. Com-puter Engineering, 2020, 46(8): 27-34. [18] APOSTOLOPOULOS P A, FRAGKOS G, TSIROPOU-LOU E E, et al. Data offloading in UAV-assisted multi-access edge computing systems under resource uncertainty[J]. IEEE Transactions on Mobile Computing, 2023, 22(1): 175-190. [19] YI S H, HAO Z J, ZHANG Q Y, et al. LAVEA: latency-aware video analytics on edge computing platform[C]//Proceedings of the 37th IEEE International Conference on Distributed Computing Systems, Atlanta, Jun 5-8, 2017. Washington: IEEE Computer Society, 2017: 2573-2574. [20] ZHANG Y, LIU H, JIAO L, et al. To offload or not to offload: an efficient code partition algorithm for mobile cloud computing[C]//Proceedings of the 1st IEEE International Conference on Cloud Networking, Paris, Nov 28-30, 2012. Piscataway: IEEE, 2012: 80-86. [21] 曹畅, 张帅, 刘莹, 等. 基于通信云和承载网协同的算力网络编排技术[J]. 电信科学, 2020, 36(7): 55-62. CAO C, ZHANG S, LIU Y, et al. Convergence of telco cloud and bearer network based computing power network orchestration[J]. Telecommunication Science, 2020, 36(7): 55-62. [22] WANG F, XU J, DING Z G. Multi-antenna NOMA for com-putation offloading in multiuser mobile edge computing systems[J]. IEEE Transactions on Communications, 2019, 67(3): 2450-2463. [23] MENG H P, WANG S, GAO F, et al. Edge computing task offloading method for load balancing and delay optimiza-tion[C]//Proceedings of the ACM TURC 2021: ACM Turing Award Celebration Conference, Hefei, Jul 30-Aug 1, 2021. New York: ACM, 2021: 173-178. [24] ZHANG W Q, ZHANG G L, MAO S W. Joint parallel offloading and load balancing for cooperative-MEC systems with delay constraints[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4249-4263. [25] ZHANG J, GUO H Z, LIU J J, et al. Task offloading in vehicular edge computing networks: a load-balancing solu-tion[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 2092-2104. [26] DAI Y Y, XU D, MAHARJAN S, et al. Joint load balancing and offloading in vehicular edge computing and networks[J]. IEEE Internet of Things Journal, 2019, 6(3): 4377-4387. [27] Office of Energy Efficiency and Renewable Energy. Data centers and servers[EB/OL]. [2022-04-24]. https://www.energy.gov/eere/buildings/data-centers-servers. [28] ZENG F, REN Y Z, DENG X H, et al. Cost-effective edge server placement in wireless metropolitan area networks[J]. Sensors, 2019, 19(1): 32. [29] MACGILLVARY C, REINSEL D. Wordwild global data-sphere IoT device and data firecast[M]//IDC Market Fore-cast-Doc, 2019: 2107-2118. [30] KONG W P, LI X Y, HOU L Y, et al. A reliable and effi-cient task offloading strategy based on multifeedback trust mechanism for IoT edge computing[J]. IEEE Internet of Things Journal, 2022, 9(15): 13927-13941. [31] REN W, SUN Y, LUO H, et al. A demand-driven incremen-tal deployment strategy for edge computing in IoT network[J]. IEEE Transactions on Network Science and Enginee-ring, 2022, 9(2): 416-430. [32] FAN Q, ANSARI N. Cost aware cloudlet placement for big data processing at the edge[C]//Proceedings of the 2017 IEEE International Conference on Communications, Paris, May 21-25, 2017. Piscataway: IEEE, 2017: 1-6. [33] ZHAO J, GAO W, WANG Y, et al. Delay-constrained ca-ching in cognitive radio networks[J]. IEEE Transactions on Mobile Computing, 2016, 15(3): 627-640. [34] XIA X Y, CHEN F F, HE Q, et al. Cost-effective App data distribution in edge computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(1): 31-44. [35] XU J, CHEN L X, REN S L. Online learning for offloading and autoscaling in energy harvesting mobile edge compu-ting[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(3): 361-373. [36] SONG M, LEE Y, KIM K. Reward-oriented task offloading under limited edge server power for multiaccess edge com-puting[J]. IEEE Internet of Things Journal, 2021, 8(17): 13425-13438. [37] RIDHAWI I A, ALOQAILY M, BOUKERCHE A, et al. Enabling intelligent IoCV services at the edge for 5G net-works and beyond[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 5190-5200. [38] NGUYEN H D, AOKI S, NISHIYAMA Y, et al. A run-time dynamic computation offloading strategy in vehicular edge computing[C]//Proceedings of the 94th IEEE Vehicular Tech-nology Conference, Norman, Sep 27-30, 2021. Piscataway: IEEE, 2021: 1-7. [39] SAMANTA A, LI Y. DeServE: delay-agnostic service offload-ing in mobile edge clouds: poster[C]//Proceedings of the 2nd ACM/IEEE Symposium on Edge Computing, San Jose/Silicon Valley, Oct 12-14, 2017. New York: ACM, 2017: 24. [40] SAMANTA A, CHANG Z, HAN Z. Latency-oblivious dis-tributed task scheduling for mobile edge computing[C]//Pro-ceedings of the 2018 IEEE Global Communications Conference, Abu Dhabi, Dec 9-13, 2018. Piscataway: IEEE, 2018: 1-7. [41] REN J K, YU G D, HE Y H, et al. Collaborative cloud and edge computing for latency minimization[J]. IEEE Transa-ctions on Vehicular Technology, 2019, 68(5): 5031-5044. [42] PAN Z Y, CHEN J L, CHANG Y C. Low-latency compu-tation offloading based on 5G edge computing systems[C]//Proceedings of the 24th International Conference on Ad-vanced Communication Technology, Pyeongchang, Feb 13-16, 2022. Piscataway: IEEE, 2022: 95-100. [43] WANG X J, NING Z L, GUO L, et al. Online learning for distributed computation offloading in wireless powered mobile edge computing networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(8): 1841-1855. [44] CHEN M, HAO Y X, GHARAVI H, et al. Cognitive infor-mation measurements: a new perspective[J]. Information Sciences, 2019, 505: 487-497. [45] TANG Q, LIU L X, JIN C Y, et al. An UAV-assisted mobile edge computing offloading strategy for minimizing energy consumption[J]. Computer Networks, 2022, 207: 108857. [46] TAN L, KUANG Z F, ZHAO L, et al. Energy-efficient joint task offloading and resource allocation in OFDMA-based collaborative edge computing[J]. IEEE Transactions on Wire-less Communications, 2022, 21(3): 1960-1972. [47] QIAN L P, SHI B H, WU Y, et al. NOMA-enabled mobile edge computing for Internet of things via joint communi-cation and computation resource allocations[J]. IEEE In-ternet of Things Journal, 2020, 7(1): 718-733. [48] ARIF M, SJESH F, SHAMAUDHEEN S, et al. Secure and energy-efficient computational offloading using LSTM in mobile edge computing[J]. Security and Communication Networks, 2022: 4937588. [49] ZHOU H, JIANG K, LIU X X, et al. Deep reinforcement learning for energy-efficient computation offloading in mobile-edge computing[J]. IEEE Internet of Things Journal, 2022, 9(2): 1517-1530. [50] DING Y, LI K L, LIU C B, et al. A potential game theoretic approach to computation offloading strategy optimization in end-edge-cloud computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(6): 1503-1519. [51] LI Y Z, WANG S G. An energy-aware edge server place-ment algorithm in mobile edge computing[C]//Proceedings of the 2018 IEEE International Conference on Edge Com-puting, San Francisco, Jul 2-7, 2018. Washington: IEEE Com-puter Society, 2018: 66-73. [52] BABAR M, KHAN M S, DIN A, et al. Intelligent computa-tion offloading for IoT applications in scalable edge compu-ting using artificial bee colony optimization[J]. Complexity, 2021: 5563531. [53] HUA M, WANG Y, LI C G, et al. Energy-efficient optimiza-tion for UAV-aided cellular offloading[J]. IEEE Wireless Communications Letters, 2019, 8(3): 769-772. [54] MOTLAGH N H, BAGAA M, TALEB T. UAV-based IoT platform: a crowd surveillance use case[J]. IEEE Commu-nications Magazine, 2017, 55(2): 128-134. [55] REN Y L, XIE Z B, DING Z F, et al. Computation offload-ing game in multiple unmanned aerial vehicle-enabled mobile edge computing networks[J]. IET Communications, 2021, 15(10): 1392-1401. [56] ZHANG K Y, GUI X L, REN D W, et al. Energy-latency tradeoff for computation offloading in UAV-assisted multi-access edge computing system[J]. IEEE Internet of Things Journal, 2021, 8(8): 6709-6719. [57] 王亭惠, 陈桂芬. 基于DP-HAFS算法的移动边缘计算卸载策略[J]. 计算机应用研究, 2023, 40(4): 1184-1188. WANG T H, CHEN G F. Mobile edge computing offloading strategy based on DP-HAFS algorithm[J]. Application Re-search of Computers, 2023, 40(4): 1184-1188. [58] 卫金菊, 郭荣佐. 物联网边缘计算卸载和资源分配关联算法[J]. 计算机工程与设计, 2022, 43(8): 2174-2180. WEI J J, GUO R Z. Correlation algorithm of edge compu-ting offloading and resource allocation in Internet of things[J]. Computer Engineering and Design, 2022, 43(8): 2174-2180. [59] CHEN X F, ZHANG H G, WU C, et al. Optimized compu-tation offloading performance in virtual edge computing systems via deep reinforcement learning[J]. IEEE Internet of Things Journal, 2019, 6(3): 4005-4018. [60] XU X L, LIU X H, YIN X C, et al. Privacy-aware offload-ing for training tasks of generative adversarial network in edge computing[J]. Information Science, 2020, 532: 1-15. |
[1] | 张宝花, 李辉, 刘倩, 高美娜, 黄荷, 赵毅, 于坤千, 金钟. 超大规模药物虚拟筛选的实现与应用[J]. 计算机科学与探索, 2023, 17(5): 1049-1056. |
[2] | 阳勇,孟相如,康巧燕,韩晓阳. 拓扑与资源感知的虚拟网络功能迁移方法[J]. 计算机科学与探索, 2021, 15(11): 2161-2170. |
[3] | 矫培艳,张闯闯,王兴伟,黄敏. SDN控制域确定与划分机制[J]. 计算机科学与探索, 2019, 13(12): 2053-2060. |
[4] | 任珂欣,王兴伟,马连博,黄敏. 蚁群分工启发的ICN负载均衡机制[J]. 计算机科学与探索, 2018, 12(7): 1109-1116. |
[5] | 李伟东,李陈筠然,李建平. lp范数下具有等级约束的负载均衡问题[J]. 计算机科学与探索, 2016, 10(8): 1184-1190. |
[6] | 彭建华,李臣明,邱军林,李晓芳,徐立中. 接收与处理分离的实时大数据处理模型[J]. 计算机科学与探索, 2015, 9(8): 906-913. |
[7] | 周爽,鲍玉斌,王志刚,冷芳玲,于戈,邓超,郭磊涛. BHP:面向BSP模型的负载均衡Hash图数据划分[J]. 计算机科学与探索, 2014, 8(1): 40-50. |
[8] | 罗海飙,王婷,张云泉. 一般稀疏矩阵相乘的混合并行算法[J]. 计算机科学与探索, 2013, 7(8): 698-703. |
[9] | 蔡志平,刘书昊,王晗,曹介南,徐明. 高性能并行入侵检测算法与框架[J]. 计算机科学与探索, 2013, 7(4): 289-303. |
[10] | 杨 云,顾沈君,徐文春,田浩澄,韩龙生. Mobile-Agent的空洞避免路由算法[J]. 计算机科学与探索, 2012, 6(9): 844-851. |
[11] | 周欢云1,2 , 王 伟1,3 , 张文博1 . 面向云环境的自适应集群调整方法[J]. 计算机科学与探索, 2011, 5(4): 347-355. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||