[1] CAO J, LIU B, WEN Y, et al. Personalized and invertible face de-identification by disentangled identity information manipulation[C]//Proceedings of the 2021 IEEE/CVF Interna-tional Conference on Computer Vision, Jun 19-25, 2021. Piscataway: IEEE, 2021: 3334-3342.
[2] GONG M, LIU J, LI H, et al. Disentangled representation learning for multiple attributes preserving face deidentifica-tion[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(1): 244-256.
[3] MAXIMOV M, ELEZI I, LEAL-TAIXé L. CIAGAN: condit-ional identity anonymization generative adversarial networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 14-19, 2020. Piscataway: IEEE, 2020: 5447-5456.
[4] SUN Q, TEWARI A, XU W, et al. A hybrid model for identity obfuscation by face replacement[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 553-569.
[5] WANG H P, OREKONDY T, FRITZ M. InfoScrub: towards attribute privacy by targeted obfuscation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 3281-3289.
[6] CHEREPANOVA V, GOLDBLUM M, FOLEY H, et al. LowKey: leveraging adversarial attacks to protect social media users from facial recognition[EB/OL]. [2022-08-05]. https://arxiv.org/abs/ 2101.07922.
[7] CHHABRA S, SINGH R, VATSA M, et al. Anonymizing k-facial attributes via adversarial perturbations[EB/OL]. [2022-08-05]. https://arxiv.org/abs/1805.09380.
[8] YANG X, DONG Y, PANG T, et al. Towards face encryp-tion by generating adversarial identity masks[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Mar 10-11, 2021. Piscataway: IEEE, 2021: 3897-3907.
[9] ZHANG J, SANG J, ZHAO X, et al. Adversarial privacy-preserving filter[C]//Proceedings of the 2020 ACM Interna-tional Conference on Multimedia. New York: ACM, 2020: 1423-1431.
[10] ZHONG Y, DENG W. OPOM: customized invisible cloak towards face privacy protection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3590-3603.
[11] HU S, LIU X, ZHANG Y, et al. Protecting facial privacy: generating adversarial identity masks via style-robust makeup transfer[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 15014-15023.
[12] DIAMANT N, ZADOK D, BASKIN C, et al. Beholder-GAN: generation and beautification of facial images with condi-tioning on their beauty level[C]//Proceedings of the 2019 IEEE International Conference on Image Processing, Taipei, China, Sep 22-25, 2019. Piscataway: IEEE, 2019: 739-743.
[13] HUANG Z, SUEN C Y. Identity-preserved face beauty trans-formation with conditional generative adversarial networks[C]//Proceedings of the 2021 International Conference on Pattern Recognition, Jan 10-11, 2021. Cham: Springer, 2021: 7273-7280.
[14] HE J, WANG C, ZHANG Y, et al. FA-GANs: facial attrac-tiveness enhancement with generative adversarial networks on frontal faces[EB/OL]. [2022-08-05]. https://arxiv.org/abs/2005.08168.
[15] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems 27, Montreal, Dec 8-13, 2014: 2672-2680.
[16] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image transla-tion with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1125-1134.
[17] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 815-823.
[18] WANG H, WANG Y, ZHOU Z, et al. CosFace: large margin cosine loss for deep face recognition[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 19-21, 2018. Washington: IEEE Computer Society, 2018: 5265-5274.
[19] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Advances in Neural Infor-mation Processing Systems 30, Long Beach, Dec 4-9, 2017: 5769-5779.
[20] MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[EB/OL]. [2022-08-05]. https://arxiv.org/abs/1706.06083.
[21] GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. [2022-08-05]. https://arxiv.org/abs/1412.6572.
[22] POURSAEED O, KATSMAN I, GAO B, et al. Generative adversarial perturbations[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 19-21, 2018. Washington: IEEE Computer Society, 2018: 4422-4431.
[23] DENG J, GUO J, XUE N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4690-4699.
[24] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 19-21, 2018. Washington: IEEE Computer Society, 2018: 7132-7141.
[25] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: effi-cient convolutional neural networks for mobile vision appli-cations[EB/OL]. [2022-08-05]. https://arxiv.org/abs/1704.04861. |