[1] BAELDE M, BIERNACKI C, GREFF R. Real-time monophonic and polyphonic audio classification from power spectra[J]. Pattern Recognition, 2019, 92: 82-92.
[2] XU R, WUNSCH D. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3): 645-678.
[3] ASAD M, JIANG H, YANG J, et al. Multi-stream 3D latent feature clustering for abnormality detection in videos[J]. Applied Intelligence, 2022, 52(1): 1126-1143.
[4] SHARIF A, LI J P, SALEEM M A, et al. A dynamic clustering technique based on deep reinforcement learning for Internet of vehicles[J]. Journal of Intelligent Manufacturing, 2021, 32(3): 757-768.
[5] AGHABOZORGI S, SHIRKHORSHIDI A S, WAH T Y. Time-series clustering—a decade review[J]. Information Systems, 2015, 53: 16-38.
[6] LI H. Multivariate time series clustering based on common principal component analysis[J]. Neurocomputing, 2019, 349: 239-247.
[7] HE H, TAN Y. Unsupervised classification of multivariate time series using VPCA and fuzzy clustering with spatial weighted matrix distance[J]. IEEE Transactions on Cybernetics, 2018, 50(3): 1096-1105.
[8] LI H, LIU Z. Multivariate time series clustering based on complex network[J]. Pattern Recognition, 2021, 115: 107919.
[9] LI H, DU T. Multivariate time-series clustering based on component relationship networks[J]. Expert Systems with Applications, 2021, 173: 114649.
[10] 李海林, 王成, 邓晓懿. 基于分量属性近邻传播的多元时间序列数据聚类方法[J]. 控制与决策, 2018, 33(4): 649-656.
LI H L, WANG C, DENG X Y. Multivariate time series clustering based on affinity propagation of component attributes[J]. Control and Decision, 2018, 33(4): 649-656.
[11] OZER M, SAPIENZA A, ABELIUK A, et al. Discovering patterns of online popularity from time series[J]. Expert Systems with Applications, 2020, 151: 113337.
[12] LI H, WEI M. Fuzzy clustering based on feature weights for multivariate time series[J]. Knowledge-Based Systems, 2020, 197: 105907.
[13] HE G, JIANG W, PENG R, et al. Soft subspace based ensemble clustering for multivariate time series data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7761-7774.
[14] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, Dec 27, 1965-Jan 7, 1966. California: University of California Press, 1967: 281-297.
[15] RODRIGUEZ A,LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[16] 吕伟杰, 方一帆, 程泽. 基于模糊C均值聚类和样本加权卷积神经网络的日前光伏出力预测研究[J]. 电网技术, 2022, 46(1): 8-14.
LV W J, FANG Y F, CHENG Z. Prediction of day-ahead photovoltaic output based on FCM-WS-CNN[J]. Power System Technology, 2022, 46(1): 8-14.
[17] TONG W, WANG Y, ZHONG J, et al. A new weight based density peaks clustering algorithm for numerical and categorical data[C]//Proceedings of the 13th International Conference on Computational Intelligence and Security, Hong Kong, China, Dec 15-18, 2017: 169-172.
[18] FRANCESCHI J Y, DIEULEVEUT A, JAGGI M. Unsupervised scalable representation learning for multivariate time series[C]//Proceedings of the 2019 Annual Conference on Neural Information Processing Systems, Vancouver, Dec 8-14, 2019. Cambridge: MIT Press, 2019: 4652-4663.
[19] IENCO D, INTERDONATO R. Deep multivariate time series embedding clustering via attentive-gated autoencoder[C]//Proceedings of the 24th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Singapore, May 11-14, 2020. Cham: Springer, 2020: 318-329.
[20] ZAKARIA J, MUEEN A, KEOGH E. Clustering time series using unsupervised-shapelets[C]//Proceedings of the 12th International Conference on Data Mining, Brussels, Dec 10-13, 2012: 785-794.
[21] LIU R, WANG H, YU X. Shared-nearest-neighbor-based clustering by fast search and find of density peaks[J]. Information Sciences, 2018, 450: 200-226.
[22] 余思琴, 闫秋艳, 闫欣鸣. 基于最佳U-shapelets的时间序列聚类算法[J]. 计算机应用, 2017, 37(8): 2349-2356.
YU S Q, YAN Q Y, YAN X M. Clustering algorithm of time series with optimal U-shapelets[J]. Journal of Computer Applications, 2017, 37(8): 2349-2356.
[23] YE L, KEOGH E. Time series shapelets: a new primitive for data mining[C]//Proceedings of the 15th International Conference on Knowledge Discovery and Data Mining, Paris, Jun 28-Jul 1, 2009. New York: ACM, 2009: 947-956.
[24] ULANOVA L, BEGUM N, KEOGH E. Scalable clustering of time series with u-shapelets[C]//Proceedings of the 2015 SIAM International Conference on Data Mining, Vancouver, Apr 30-May 2, 2015. Philadelphia: SIAM, 2015: 900-908.
[25] ZHANG Q, WU J, ZHANG P, et al. Salient subsequence learning for time series clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(9): 2193-2207.
[26] ZHANG N, SUN S. Multiview unsupervised shapelet learning for multivariate time series clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4981-4996.
[27] 陈磊, 吴润秀, 李沛武, 等. 加权K近邻和多簇合并的密度峰值聚类算法[J]. 计算机科学与探索, 2022, 16(9): 2163-2176.
CHEN L, WU R X, LI P W, et al. Weighted K-nearest neighbors and multi-cluster merge density peaks clustering algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2163-2176.
[28] DU M, WANG R, JI R, et al. ROBP a robust border-peeling clustering using Cauchy kernel[J]. Information Sciences, 2021, 571: 375-400.
[29] 曹俊茸, 张德生, 肖燕婷. 结合密度比和系统演化的密度峰值聚类算法[J]. 计算机工程与应用, 2022, 58(21): 75-82.
CAO J R, ZHANG D S, XIAO Y T. Density peak clustering algorithm combining density-ratio and system evolution[J]. Computer Engineering and Applications, 2022, 58(21): 75-82. |