[1] CHEN M, CHEN Y, ZHU H, et al. Analysis of pollutants transport in heavy air pollution processes using a new complex-network-based model[J]. Atmospheric Environment, 2023, 292: 119395.
[2] 陈梅. 面向复杂数据的聚类算法研究[D]. 兰州:兰州大学,2016.
CHEN M. Research on clustering algorithm for complex data[D]. Lanzhou: Lanzhou University, 2016.
[3] 李珺,刘鹤,朱良宽. 基于改进的K-means算法的关联规则数据挖掘研究[J]. 小型微型计算机系统,2021, 42(1): 15-19.
LI J, LIU H, ZHU L K. Research on association rule-data mining based on improved K-means algorithm[J]. Journal of Chinese Computer Systems, 2021, 42(1): 15-19.
[4] KARNA A, GIBERT K. Automatic identification of the number of clusters in hierarchical clustering[J]. Neural Computing and Applications, 2021, 34: 119-134.
[5] 张锦宏, 陈梅, 张弛. 自适应阈值约束的密度簇主干聚类算法[J]. 计算机科学与探索, 2023, 17(12): 2880-2895.
ZHANG J H, CHEN M, ZHANG C. Density backbone clustering algorithm based on adaptive threshold[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 2880-2895.
[6] CHENG M, MA T, MA L, et al. Adaptive grid-based forest-like clustering algorithm[J]. Neurocomputing, 2022, 481: 168-181.
[7] 白璐,赵鑫,孔钰婷,等. 谱聚类算法研究综述[J]. 计算机工程与应用, 2021, 57(14): 15-26.
BAI L, ZHAO X, KONG Y T, et al. Survey of spectral clustering algorithms[J]. Computer Engineering and Applications, 2021, 57(14): 15-26.
[8] ZHU Q, ZHANG R, HUANG S J, et al. LGSLRR: towards fusing discriminative ordinal local and global structured low-rank representation for image recognition[J]. Information Sciences, 2020, 539: 522-535.
[9] ELHAMIFAR E, VIDAL R. Sparse subspace clustering: algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781.
[10] LIU G C, LIN Z C, YAN S C, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184.
[11] LIU G C, YAN S C. Latent low-rank representation for subspace segmentation and feature extraction[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Nov 6-13, 2011. Washington: IEEE Computer Society, 2011: 1615-1622.
[12] CHEN J, MAO H, SANG Y S, et al. Subspace clustering using a symmetric low-rank representation[J]. Knowledge-Based Systems, 2017, 127: 46-57.
[13] LI X L, CUI G S, DONG Y S. Graph regularized non-negative low-rank matrix factorization for image clustering[J]. IEEE Transactions on Cybernetics, 2016, 47(11): 3840-3853.
[14] ZHUANG L S, GAO H Y, LIN Z C, et al. Non-negative low rank and sparse graph for semisupervised learning[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Jun 16-21, 2012. Washington: IEEE Computer Society, 2012: 2328-2335.
[15] FU Z Q, ZHAO Y, CHANG D X, et al. A hierarchical weighted low-rank representation for image clustering and classification[J]. Pattern Recognition, 2021, 112: 107736.
[16] WEN J, FANG X Z, XU Y, et al. Low-rank representation with adaptive graph regularization[J]. Neural Networks, 2018, 108: 83-96.
[17] 杨永鹏,杨真真,李建林,等. 改进的截断核范数及在视频前背景分离中的应用[J]. 工程科学与技术,2021, 53(5): 219-226.
YANG Y P, YANG Z Z, LI J L, et al. Improved truncated nuclear norm and its application in video foreground-background separation[J]. Advanced Engineering Sciences, 2021, 53(5): 219-226.
[18] DUAN Y H, WEN R B, XIAO Y J. A singular value thres-holding with diagonal-update algorithm for low-rank matrix completion[J]. Mathematical Problems in Engineering, 2020. DOI: 10.1155/2020/8812701.
[19] CAI D, HE X F, HAN J W, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(8): 1548-1560.
[20] 肖成龙,张重鹏,王珊珊,等. 基于流形正则化与成对约束的深度半监督谱聚类算法[J]. 系统科学与数学,2020, 40(8): 1325-1341.
XIAO C L, ZHANG C P, WANG S S, et al. Deep semi-supervised spectral clustering algorithm based on regularization of manifold and pairwise constraints[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(8): 1325-1341.
[21] 郑建炜,朱文博,王万良,等. 块对角拉普拉斯约束的平滑聚类算法[J]. 计算机辅助设计与图形学学报,2018, 30(1): 116-123.
ZHENG J W, ZHU W B, WANG W L, et al. Smooth clustering with block-diagonal constrained Laplacian regularizer[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(1): 116-123.
[22] 任永功,刘洋,赵月. 基于秩约束密度敏感距离的自适应聚类算法[J]. 计算机科学,2017, 44(5): 276-279.
REN Y G, LIU Y, ZHAO Y. Adaptive clustering algorithm based on rank constraint density Sensitive distance[J]. Computer Science, 2017, 44(5): 276-279.
[23] NIE F P, WANG X Q, HUANG P. Clustering and projected clustering with adaptive neighbors[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 977-986.
[24] NIE F P, WANG X Q, JORDAN M, et al. The constrained Laplacian rank algorithm for graph-based clustering[C]//Proceedings of the 2016 AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 1969-1976.
[25] KANG Z, PENG C, CHENG J, et al. Logdet rank minimization with application to subspace clustering[J]. Computational Intelligence and Neuroscience, 2015: 824289.
[26] KANG Z, PENG C, CHENG J. Robust subspace clustering via smoothed rank approximation[J]. IEEE Signal Processing Letters, 2015, 22(11): 2088-2092.
[27] LIN Z C, CHEN M M, MA Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. arXiv:1009.5055, 2010.
[28] EL MOUDEN Z A, JAKIMI A. k-eNSC: k-estimation for normalized spectral clustering[C]//Proceedings of the 2020 International Conference on Intelligent Systems and Computer Vision, Fez, Jun 9-11, 2020. Piscataway: IEEE, 2020: 1-5.
[29] YIN M, GAO J B, LIN Z C. Laplacian regularized low-rank representation and its applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(3): 504-517.
[30] MA Z R, KANG Z, LUO G C, et al. Towards clustering-friendly representations: subspace clustering via graph filtering[C]//Proceedings of the 28th ACM International Conference on Multimedia, Washington, Oct 12-16, 2020. New York: ACM, 2020: 3081-3089. |