[1] 钱罗雄, 陈梅, 张弛, 等. 平滑非负低秩图表示聚类算法[J]. 计算机科学与探索, 2024, 18(3): 659-673.
QIAN L X, CHEN M, ZHANG C, et al. Smooth non-negative low-rank graph representation for clustering[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 659-673.
[2] AGHABOZORIGI S, SHIRKHORSHIDI A S, WAH T Y. Time-series clustering—a decade review[J]. Information Systems, 2015, 53: 16-38.
[3] CHEN M, CHEN Y S, ZHU H Y, et al. Analysis of pollutants transport in heavy air pollution processes using a new complex-network based model[J]. Atmospheric Environment, 2023, 292: 119395.
[4] 万静, 吴凡, 何云斌, 等. 新的降维标准下的高维数据聚类算法[J]. 计算机科学与探索, 2020, 14(1): 96-107.
WAN J, WU F, HE Y B, et al. Clustering algorithm for high-dimensional data under new dimensionality reduction criteria[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 96-107.
[5] GEORGE A B, NIU Y B, AVIYENTE S, et al. A practical introduction to EEG time-frequency principal components analysis (TF-PCA)[J]. Developmental Cognitive Neuroscience, 2022, 55: 101114.
[6] LIU J W, KANG H, TAO W D, et al. A spatial distribution-principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil[J]. Science of the Total Environment, 2023, 859: 160112.
[7] LI H L. Multivariate time series clustering based on common principal component analysis[J]. Neurocomputing, 2019, 349: 239-247.
[8] LAURENS V D M, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
[9] MCINNES L, HEALY J. UMAP: uniform manifold approximation and projection for dimension reduction[J]. Journal of Open Source Software, 2018, 3(29): 861.
[10] STEINARSSON S. Down-sampling time series for visual representation[D]. Iceland: Reykjavik University, 2013.
[11] SAKOE H, CHIBA S. A dynamic programming approach to continuous speech recognition[C]//Proceedings of the 7th International Congress on Acoustics, Budapest, Jan 1, 1971: 65-69.
[12] FOLGADO D, BARANDAS M, MATUAS R, et al. Time alignment measurement for time series[J]. Pattern Recognition, 2018, 81: 268-279.
[13] WANG X, YU F, PEDRYCZ W, et al. Clustering of interval-valued time series of unequal length based on improved dynamic time warping[J]. Expert Systems with Applications, 2019, 125: 293-304.
[14] HONG J Y, PARK S H, BAEK J G. SSDTW: shape segment dynamic time warping[J]. Expert Systems with Applications, 2020, 150(3): 113291.
[15] LI H L. Time works well: dynamic time warping based on time weighting for time series data mining[J]. Information Sciences, 2021, 547: 592-608.
[16] PAPARRIZOS J, GRAVANO L. k-Shape: efficient and accurate clustering of time series[J]. SIGMOD Record, 2016,45(1): 69-76.
[17] FELIPE L G, GUSTAVO R F, HENRIQUE F D A, et al. Principal component analysis: a natural approach to data exploration[J]. ACM Computing Surveys, 2021, 54(4): 1-34.
[18] DUFERA A G, LIU T T, XU J. Regression models of Pearson correlation coefficient[J/OL]. Statistical Theory and Related Fields [2022-09-24]. https://doi.org/10.1080/24754269. 2023.2164970.
[19] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, Jun 21-Jul 18, 1965. Berkeley: University of California Press, 1967: 281-297.
[20] KAUFMAN L, ROUSSEEUW P J . Finding groups in data: an introduction to cluster analysis[M]. New York: John Wiley & Sons, Inc., 1990.
[21] GUIJIO R D, AM D R, PA G, et al. Time series clustering based on the characterization of segment typologies[J]. IEEE Transactions on Cybernetics, 2021, 51(11): 5409-5422.
[22] LUCZAK M. Hierarchical clustering of time series data with parametric derivative dynamic time warping[J]. Expert Systems with Applications, 2016, 62: 116-130.
[23] YANG J, LESKOVEC J. Patterns of temporal variation in online media[C]//Proceedings of the 4th International Conference on Web Search and Web Data Mining, Hong Kong, China, Feb 9-12, 2011. New York: ACM, 2011: 177-186.
[24] YANG X, DENG C, ZHENG F, et al. Deep spectral clustering using dual autoencoder network[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4066-4075.
[25] MADIRAJU N S, SADAT S M, FISHER D, et al. Deep temporal clustering: fully unsupervised learning of time-domain features[J]. arXiv:1802.01059, 2018.
[26] DEYU B, XIAO W, CHUAN S, et al. Structural deep clustering network[C]//Proceedings of the Web Conference 2020, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 1400-1410.
[27] 李海林, 贾瑞颖, 谭观音. 基于K-Shape的时间序列模糊分类方法[J]. 电子科技大学学报, 2021, 50(6): 899-906.
LI H L, JIA R Y, TAN G Y. Fuzzy classification for time series data based on K-Shape[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(6): 899-906.
[28] GARCIA V, SANCHEZ J S, MOLLINEDA R A. On the effectiveness of preprocessing methods when dealing with different levels of class imbalance[J]. Knowledge-Based Systems, 2012, 25(1): 13-21.
[29] KEOGH E,CHAKRABARI K,PAZZANI M, et al. Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge and Information Systems, 2001, 3: 263-286.
[30] 张锦宏, 陈梅, 张弛. 自适应阈值约束的密度簇主干聚类算法[J]. 计算机科学与探索, 2023, 17(12): 2880-2895.
ZHANG J H, CHEN M, ZHANG C. Density backbone clustering algorithm based on adaptive threshold[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 2880-2895. |