[1] KELLERER H, PFERSCHY U, PISINGER D. Knapsack pro-blems[M]. Berlin Heidelberg: Springer, 2004.
[2] ROBERT P R, HARALD V H. Robust optimization of the 0-1 knapsack problem: balancing risk and return in assortment optimization[J]. European Journal of Operational Research, 2016, 250(5): 842-854.
[3] FELIX B, STEFAN N. The air cargo load planning problem—a consolidated problem definition and literature review on related problems[J]. European Journal of Operational Research, 2019, 275(6): 399-410.
[4] PETER J. Resource capacity allocation to stochastic dynamic competitors: knapsack problem for perishable items and index-knapsack heuristic[J]. Annals of Operations Research, 2013, 241(1/2): 1-25.
[5] GULDAN B. Heuristic and exact algorithms for discounted knapsack problems[D]. Nuremberg: University of Erlangen-Nuremberg, 2007: 1-78.
[6] 贺毅朝, 王熙照, 李文斌, 等. 基于遗传算法求解折扣{0-1}背包问题的研究[J]. 计算机学报, 2016, 39(12): 2614-2630.
HE Y C, WANG X Z, LI W B, et al. Research on genetic algo-rithms for the discounted {0-1} knapsack problem[J]. Chinese Journal of Computers, 2016, 39(12): 2614-2630.
[7] RONG A Y, FIGUEIRA J R, KLAMROTH K. Dynamic pro-gramming based algorithms for the discounted {0-1} knapsack problem[J]. Applied Mathematics and Computation, 2012, 218(12): 6921-6933.
[8] HE Y C, WANG X Z, HE Y L, et al. Exact and approximate algorithms for discounted {0-1} knapsack problem[J]. Information Sciences, 2016, 369: 634-647.
[9] 贺毅朝, 王熙照, 赵书良, 等. 基于编码转换的离散演化算法设计与应用[J]. 软件学报, 2018, 29(9): 2580-2594.
HE Y C, WANG X Z, ZHAO S L, et al. Design and applications of discrete evolutionary algorithm based on encoding transformation[J]. Journal of Software, 2018, 29(9): 2580-2594.
[10] 吴聪聪, 贺毅朝, 陈嶷瑛, 等. 变异蝙蝠算法求解折扣{0-1}背包问题[J]. 计算机应用, 2017, 37(5): 1292-1299.
WU C C, HE Y C, CHEN Y Y, et al. Mutated bat algorithm for solving discounted {0-1} knapsack problem[J]. Journal of Computer Applications, 2017, 37(5): 1292-1299.
[11] 吴聪聪, 贺毅朝, 赵建立. 求解折扣{0-1}背包问题的新遗传算法[J]. 计算机工程与应用, 2020, 56(7): 57-66.
WU C C, HE Y C, ZHAO J L. New genetic algorithm for discounted {0-1} knapsack problem[J]. Computer Engineering and Applications, 2020, 56(7): 57-66.
[12] ZHU H, HE Y C, WANG X Z, et al. Discrete differential evolutions for the discounted {0-1} knapsack problem[J]. International Journal of Bio-Inspired Computation, 2017, 10(4): 219-238.
[13] 刘雪静, 贺毅朝, 路凤佳, 等. 基于Lévy飞行的差分乌鸦算法求解折扣{0-1}背包问题[J]. 计算机应用, 2018, 38(2): 433-442.
LIU X J, HE Y C, LU F J, et al. Differential crow search algorithm based on Lévy flight for solving discount {0-1} knapsack problem[J]. Journal of Computer Applications, 2018, 38(2): 433-442.
[14] 刘雪静, 贺毅朝, 吴聪聪, 等. 自适应细菌觅食算法求解折扣{0-1}背包问题[J]. 计算机工程与应用, 2018, 54(18): 139-146.
LIU X J, HE Y C, WU C C, et al. Adaptive bacterial foraging optimization algorithm for discounted {0-1} knapsack pro-blem[J]. Computer Engineering and Applications, 2018, 54(18): 139-146.
[15] 冯艳红, 杨娟, 贺毅朝, 等. 差分进化帝王蝶优化算法求解折扣{0-1}背包问题[J]. 电子学报, 2018, 46(6): 1343-1350.
FENG Y H, YANG J, HE Y C, et al. Monarch butterfly optimization algorithm with differential evolution for the discounted {0-1} knapsack problem[J]. Acta Electronica Sinica, 2018, 46(6): 1343-1350.
[16] 杨洋, 潘大志, 刘益, 等. 折扣{0-1}背包问题的简化新模型及遗传算法求解[J]. 计算机应用, 2019, 39(3): 656-662.
YANG Y, PAN D Z, LIU Y, et al. New simplified model of discounted {0-1} knapsack problem and solution by genetic algorithm[J]. Journal of Computer Applications, 2019, 39(3): 656-662.
[17] 史文旭, 杨洋, 鲍胜利. 贪心核加速动态规划算法求解折扣{0-1}背包问题[J]. 计算机应用, 2019, 39(7): 1912-1917.
SHI W X, YANG Y, BAO S L. Greedy core acceleration dynamic programming algorithm for solving discounted {0-1} knapsack problem[J]. Journal of Computer Applications, 2019, 39(7): 1912-1917.
[18] HE Y C, WANG X Z, GAO S G. Ring theory-based evolutionary algorithm and its application to D{0-1} KP[J]. App-lied Soft Computing Journal, 2019, 77: 714-722.
[19] WU C C, ZHAO J L, FENG Y H, et al. Solving discounted {0-1} knapsack problems by a discrete hybrid teaching-learning-based optimization algorithm[J]. Applied Intelligence, 2020, 50(12): 1-7.
[20] LI Y, HE Y C, LIU X J, et al. A novel discrete whale optimization algorithm for solving knapsack problems[J]. Applied Intelligence, 2020, 50: 3350-3366.
[21] 张发展, 贺毅朝, 刘雪静, 等. 新颖的离散差分演化算法求解D{0-1}KP问题[J]. 计算机科学与探索, 2022, 16(2): 468-479.
ZHANG F Z, HE Y C, LIU X J, et al. Novel discrete differential evolution algorithm for solving D{0-1}KP problem[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 468-479.
[22] TRAN V N, TRUONG T K. A binary social spider algorithm for discounted {0-1} knapsack problem[J]. ICIC Express Letters, 2021, 15(3): 257-264.
[23] 郝翔, 贺毅朝, 朱晓斌, 等. 基于离散混合多宇宙算法求解折扣{0-1}背包问题[J]. 计算机工程与应用, 2021, 57(18): 103-113.
HAO X, HE Y C, ZHU X B, et al. Discrete hybrid multi-verse optimization algorithm for solving discounted {0-1} knapsack problem[J]. Computer Engineering and Applications, 2021, 57(18): 103-113.
[24] WANG R, ZHANG Z. Set theory based operator design in evolutionary algorithms for solving knapsack problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(6): 1133-1147.
[25] WILBAUT C, TODOSIJEVIC R, HANAFI S, et al. Heuristic and exact reduction procedures to solve the discounted 0-1 knapsack problem[J]. European Journal of Operational Research, 2023, 304(3): 901-911.
[26] WILBAUT C, TODOSIJEVI? R, HANAFI S, et al. Variable neighborhood search for the discounted {0-1} knapsack problem[J]. Applied Soft Computing Journal, 2022, 131: 109821.
[27] TRUONG T K. A new moth-flame optimization algorithm for discounted {0-1} knapsack problem[J]. Mathematical Pro-blems in Engineering, 2021. DOI: 10.1155/2021/5092480.
[28] KANG Y, WANG H N, PU B. et al. TMHSCA: a novel hybrid two-stage mutation with a sine cosine algorithm for discounted {0-1} knapsack problems[J]. Neural Computing & Applications, 2023, 35(4): 12691-12713.
[29] HE Y C, WANG X Z. Group theory-based optimization algorithm for solving knapsack problems[J]. Knowledge-Based Systems, 2018, 219(3): 104445.
[30] WANG R, ZHANG Z C, NG W W Y, et al. An improved group theory-based optimization algorithm for discounted 0-1 knap-sack problem[J]. Advances in Computational Intelligence, 2021, 1(5): 1-11.
[31] ZHAI Q L, HE Y C, WANG G G, et al. A general approach to solving hardware and software partitioning problem based on evolutionary algorithms[J]. Advances in Engineering Soft-ware, 2021, 159(9): 102998.
[32] LI Z W, ZHANG Q S, HE Y C. Modified group theory-based optimization algorithms for numerical optimization[J]. Applied Intelligence, 2022, 52(8): 11300-11323.
[33] ZHANG F Z, HE Y C, OUYANG H B, et al. A fast and efficient discrete evolutionary algorithm for the uncapacitated facility location problem[J]. Expert Systems with Applications, 2023, 213: 118978.
[34] 耿素云, 屈婉玲, 王捍贫. 离散数学教程[M]. 北京: 北京大学出版社, 2002: 253-255.
GENG S Y, QU W L, WANG H P. Discrete mathematics course[M]. Beijing: Peking University Press, 2002: 253-255.
[35] RAJEEV M, PRABHAKAR R. Randomized algorithms[M]. Cambridge: Cambridge University Press, 1995.
[36] JOAQUíN D, SALVADOR G, DANIEL M, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18.
[37] 张寒崧, 贺毅朝. 增强型GTOA与求解D{0-1}KP最先进算法的计算结果比较[EB/OL]. [2023-03-31]. https://www.researchgate.net/publication/371165730_zengqiangxingGTOA-yuqiujieD0-1KPzuixianjinsuanfadejisuanjieguobijiao.
ZHANG H S, HE Y C. Comparison of calculation results of enhanced GTOA and state-of-the-art algorithms for D{0-1}KP[EB/OL]. [2023-03-31]. https://www.researchgate.net/publication/371165730_zengqianxingGTOAyuqiujieD0-1KPzuixianjinsuanfadejisuanjieguobijiao.
[38] 杨新花, 周昱帆, 沈爱玲, 等. 基于拉马克进化的差分进化算法求解KPC问题[J]. 计算机工程与应用, 2022, 58(10): 162-171.
YANG X H, ZHOU Y F, SHEN A L, et al. Lamarckian evolution-based differential evolution algorithm for solving KPC problem[J]. Computer Engineering and Applications, 2022, 58(10): 162-171.
[39] 李香军, 朱晓斌. 基于改进的群论优化算法求解具有单连续变量背包问题[J]. 新一代信息技术, 2021, 4(10): 42-49.
LI X J, ZHU X B. Improved group theory optimization algorithm for knapsack problem with a single continuous variable[J]. New Generation of Information Technology, 2021, 4(10): 42-49. |