[1] ROJAS M, BRAVO-MARQUEZ F, DUNSTAN J. Simple yet powerful: an overlooked architecture for nested named entity recognition[C]//Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Oct 12-17, 2022: 2108-2117.
[2] SHEN Y, MA X, TAN Z, et al. Locate and label: a two- stage identifier for nested named entity recognition[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021.Stroudsburg: ACL, 2021: 2782-2794.
[3] WU S, SONG X, FENG Z. MECT: multi-metadata embed- ding based cross-transformer for Chinese named entity recognition[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 1529-1539.
[4] LUO Y, ZHAO H. Bipartite flat-graph network for nested named entity recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 6-8, 2020. Stroudsburg: ACL, 2020: 6408-6418.
[5] JU M, MIWA M, ANANIADOU S. A neural layered model for nested named entity recognition[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 1446-1459.
[6] HUANG P, ZHAO X, HU M, et al. Extract-Select: a span selection framework for nested named entity recognition with generative adversarial training[C]//Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 85-96.
[7] YANG S, TU K. Bottom-up constituency parsing and nested named entity recognition with pointer networks[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 2403-2416.
[8] YUAN Z, TAN C, HUANG S, et al. Fusing heterogeneous factors with triaffine mechanism for nested named entity recognition[C]//Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 3174-3186.
[9] GU Y, QU X, WANG Z, et al. Delving deep into regularity: a simple but effective method for Chinese named entity recog-nition[C]//Findings of the Association for Computational Lin-guistics: ACL 2022. Stroudsburg: ACL, 2022: 1863-1873.
[10] WU S, SHEN Y, TAN Z, et al. Propose-and-Refine: a two-stage set prediction network for nested named entity recognition[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, Vienna, Jul 23-29, 2022: 4418-4424.
[11] LIU W, FU X, ZHANG Y, et al. Lexicon enhanced Chinese sequence labeling using BERT adapter[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 5847-5858.
[12] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre- training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186.
[13] LI X, FENG J, MENG Y, et al. A unified MRC framework for named entity recognition[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5849-5859.
[14] XUAN Z, BAO R, JIANG S. FGN: fusion glyph network for Chinese named entity recognition[C]//Proceedings of the 5th China Conference on Knowledge Graph and Semantic Computing, Aug 24-27, 2021: 28-40.
[15] LI X N, YAN H, QIU X P, et al. FLAT: Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Washington, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 6836-6842.
[16] SUN Z, LI X, SUN X, et al. ChineseBERT: Chinese pretrai- ning enhanced by glyph and Pinyin information[C]//Proce- edings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 2065-2075.
[17] YANG Z, MA J, CHEN H, et al. HiTRANS: a hierarchical transformer network for nested named entity recognition[C]//Findings of the Association for Computational Linguistics: Empirical Methods in Natural Language Processing 2021. Stroudsburg: ACL, 2021: 124-132.
[18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 99: 2999-3007.
[19] HONGYING Z, WENXIN L, KUNLI Z, et al. Building a pediatric medical corpus: word segmentation and named entity annotation[J]. Chinese Lexical Semantics, 2021, 21: 652-664.
[20] PENG N, DREDZE M. Named entity recognition for Chinese social media with jointly trained embeddings[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 548-554.
[21] WEISCHEDEL R, PRADHAN S, RAMSHAW L, et al. Ontonotes release 4.0[EB/OL]. [2022-11-25]. https://doi.org/10.35111/gfjf-7r50.
[22] WALKER C, STRASSEL S, MEDERO J, et al. ACE 2005 multilingual training corpus[J]. Progress of Theoretical Physics Supplement, Philadelphia, 2006, 110: 261-276.
[23] KIM J D, OHTA T, TATEISI Y, et al. GENIA corpus—a semantically annotated corpus for bio-textmining[J]. Bio-informatics, 2003, 19: 180-182.
[24] SPRINGER, CHAM, WANG X, et al. CHEMNER: fine- grained chemistry named entity recognition with ontology-guided distant supervision[C]//Proceedings of the 2021 Con-ference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 5227-5240.
[25] ZHANG Y, YANG J. Chinese NER using lattice LSTM [C]//Proceedings of the 56th Annual Meeting of the Ass- ociation for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 1554-1564.
[26] YU J, BOHNET B, POESIO M. Named entity recognition as dependency parsing[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6470-6476.
[27] PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543.
[28] CHIU B, CRICHTON G, KORHONEN A, et al. How to train good word embeddings for biomedical NLP[C]//Proceedings of the 15th Workshop on Biomedical Natural Language Processing. Stroudsburg: ACL, 2016: 166-174.
[29] LEE J, YOON W, KIM S, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining[J]. Bioinformatics, 2020, 36(4): 1234-1240.
[30] SONG Y, SHI S, LI J, et al. Directional skip-gram: expli- citly distinguishing left and right context for word embed-dings[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 175-180. |