[1] 耿蕾蕾,崔超然,石成,等. 基于深度多任务学习的社交图像标签和分组联合推荐[J]. 计算机科学, 2020, 47(12): 177-182.
GENG L L, CUI C R, SHI C, et al. Social image tag and group joint recommendation based on deep multi-task lear-ning[J]. Computer Science, 2020, 47(12): 177-182.
[2] MA J Q, ZHAO Z, YI X Y, et al. Modeling task relation-ships in multi-task learning with multi-gate mixture-of-experts[C]//Proceedings of the 24th ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1930-1939.
[3] CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28(1): 41-75.
[4] TANG H Y, LIU J N, ZHAO M, et al. Progressive layered extraction (PLE): a novel multi-task learning (MTL) model for personalized recommendations[C]//Proceedings of the 14th ACM Conference on Recommender Systems, Brazil, Sep 22-26, 2020. New York: ACM, 2020: 269-278.
[5] BANSAL T, BELANGER D, MCCALLUM A. Ask the GRU: multi-task learning for deep text recommendations[C]//Pro-ceedings of the 10th ACM Conference on Recommender Systems, Boston, Sep 15-19, 2016. New York: ACM, 2016: 107-114.
[6] CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 10th ACM Conference on Recommender Systems, Boston, Sep 15-19, 2016. New York: ACM, 2016: 7-10.
[7] ZHOU G R, ZHU X Q, SONG C R, et al. Deep interest net-work for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, Aug 19-23, 2018. New York: ACM, 2018: 1059-1068.
[8] COVINGTON P, ADAMS J, SARGIN E. Deep neural net-works for YouTube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems, Bos-ton, Sep 15-19, 2016. New York: ACM, 2016: 191-198.
[9] ZHU H, JIN J, TAN C, et al. Optimized cost per click in Taobao display advertising[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 2191-2200.
[10] GUO H, TANG R, YE Y, et al. DeepFM: a factorization-machine based neural network for CTR prediction[J]. arXiv:1703.04247, 2017.
[11] LU Y C, DONG R H, SMYTH B. Why I like it: multi-task learning for recommendation and explanation[C]//Procee-dings of the 12th ACM Conference on Recommender Sys-tems, Vancouver, Aug 20-23, 2018. New York: ACM, 2018: 4-12.
[12] MA X, ZHAO L Q, HUANG G, et al. Entire space multi-task model: an effective approach for estimating post-click conversion rate[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, Jul 8-12, 2018. New York: ACM, 2018: 1137-1140.
[13] ZHAO Z, HONG L C, WEI L, et al. Recommending what video to watch next: a multitask ranking system[C]//Pro-ceedings of the 13th ACM Conference on Recommender Systems, Copenhagen, Sep 16-20, 2019. New York: ACM, 2019: 43-51.
[14] RUDER S, BINGEL J, AUGENSTEIN I, et al. Sluice net-works: learning what to share between loosely related tasks[J]. arXiv:1705.08142, 2017.
[15] JACOBS R, JORDAN M, NOWLAN S, et al. Adaptive mixtures of local experts[J]. Neural Computation, 2014, 3(1): 79-87.
[16] KENDALL A, GAL Y, CIPOLLA R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 7482-7491.
[17] MILOJKOVIC N, ANTOGNINI D, BERGAMIN G, et al. Multi-gradient descent for multi-objective recommender systems[J]. arXiv:2001.00846, 2019.
[18] YU Y T, WANG Z, YUAN B. An input-aware factorization machine for sparse prediction[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 1466-1472.
[19] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Proces-sing Systems 30, Long Beach, Dec 3-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008.
[20] LIN X, CHEN H J, PEI C H, et al. A pareto-efficient algo-rithm for multiple objective optimization in e-commerce recommendation[C]//Proceedings of the 13th ACM Confe-rence on Recommender Systems, Copenhagen, Aug 21-23, 2019. New York: ACM, 2019: 20-28.
[21] DéSIDéRI J A. Multiple-gradient descent algorithm (MGDA) for multiobjective optimization[J]. Comptes Rendus Mathe-matique, 2012, 350(5/6): 313-318.
[22] MA J Q, ZHAO Z, CHEN J L, et al. SNR: sub-network routing for flexible parameter sharing in multi-task learning[C]//Proceedings of the 33rd AAAI Conference on Arti-ficial Intelligence, the 31st Innovative Applications of Arti-ficial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Hono-lulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 216-223. |