[1] LOTTE F, BOUGRAIN L, CICHOCKI A, et al. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update[J]. Journal of Neural Enginee-ring, 2018, 15: 031005.
[2] GALáN F, NUTTIN M, LEW E, et al. A brain-actuated wheel-chair: asynchronous and non-invasive brain-computer inter-faces for continuous control of robots[J]. Clinical Neuro-physiology, 2008, 119(9): 2159-2169.
[3] GUAN C. High performance P300 speller for brain-computer interface[C]//Proceedings of the 2004 IEEE International Work-shop on Biomedical Circuits and Systems, Singapore, Dec 1-3, 2004. Piscataway: IEEE, 2004.
[4] SCHWARTZ A B, CUI X T, WEBER D J, et al. Brain-con-trolled interfaces: movement restoration with neural prost-hetics[J]. Neuron, 2006, 52(1): 205-220.
[5] 吕林洋. 基于运动想象的脑电信号分类及实时控制研究[D]. 保定: 河北大学, 2021.
LV L Y. Research on EEG classification and real-time control based on motor imagery[D]. Baoding: Hebei University, 2021.
[6] TAYEB Z, FEDJAEV J, GHABOOSI N, et al. Validating deep neural networks for online decoding of motor imagery move-ments from EEG signals[J]. Sensors, 2019, 19(1): 210.
[7] GONG A, LIU J, CHEN S, et al. Time-frequency cross mu-tual information analysis of the brain functional networks underlying multiclass motor imagery[J]. Journal of Motor Behavior, 2018, 50: 254-267.
[8] 沈永龙. 基于运动想象的脑机接口关键技术研究[D]. 保定: 河北大学, 2021.
SHEN Y L. Research on key technologies of brain com-puter interface based on motor imagery[D]. Baoding: Hebei University, 2021.
[9] RAMOSER H, MULLER-GERKING J, PFURTSCHELLER G. Optimal spatial filtering of single trial EEG during ima-gined hand movement[J]. IEEE Transactions on Rehabili-tation Engineering, 2000, 8: 441-446.
[10] ANG K K, CHIN Z Y, ZHANG H, et al. Filter bank com-mon spatial pattern (FBCSP) in brain-computer interface[C]//Proceedings of the 2008 IEEE International Joint Con-ference on Neural Networks, Hong Kong, China, Jun 1-8, 2008. Piscataway: IEEE, 2008: 2390-2397.
[11] JIN J, MIAO Y, DALY I, et al. Correlation-based channel selection and regularized feature optimization for MI-based BCI[J]. Neural Networks, 2019, 118: 262-270.
[12] KUMAR S, SHARMA A, MAMUN K, et al. A deep lear-ning approach for motor imagery EEG signal classification[C]//Proceedings of the 2016 3rd Asia-Pacific World Con-gress on Computer Science and Engineering, Nadi, Dec 5-6, 2016. Piscataway: IEEE, 2016: 34-39.
[13] DE J, ZHANG X, LIN F, et al. Transduction on directed graphs via absorbing random walks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(7): 1770-1784.
[14] MA J, LIN F, WESARG S, et al. A novel Bayesian model incorporating deep neural network and statistical shape model for pancreas segmentation[C]//LNCS 11073: Proceedings of the 21st International Conference on Medical Image Com-puting and Computer Assisted Intervention, Granada, Sep 16-20, 2018. Cham: Springer, 2018: 480-487.
[15] CRAIK A, HE Y, CONTRERAS-VIDAL J L. Deep learning for electroencephalogram (EEG) classification tasks: a review[J]. Journal of Neural Engineering, 2019, 16(3): 031001.
[16] ANTONIADES A, SPYROU L, TOOK C C, et al. Deep lear-ning for epileptic intracranial EEG data[C]//Proceedings of the 2016 IEEE 26th International Workshop on Machine Lear-ning for Signal Processing, Vietrisul Mare, Sep 13-16, 2016. Piscataway: IEEE, 2016: 1-6.
[17] THODOROFF P, PINEAU J, LIM A. Learning robust fea-tures using deep learning for automatic seizure detection[C]//Proceedings of the 1st Machine Learning in Health Care, Los Angeles, Aug 19-20, 2016: 178-190.
[18] BASHIVAN P, RISH I, YEASIN M, et al. Learning repre-sentations from EEG with deep recurrent-convolutional neu-ral networks[J]. arXiv:1511.06448, 2015.
[19] VERNON L, AMELIA S, NICHOLAS R W M, et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of Neural Engi-neering, 2016, 15(5).
[20] STOBER S, CAMERON D J, GRAHN J A. Using convo-lutional neural networks to recognize rhythm stimuli from electroencephalography recordings[C]//Advances in Neural Information Processing Systems 27, Montreal, Dec 8-13, 2014: 1449-1457.
[21] TABAR Y R, HALICI U. A novel deep learning approach for classification of EEG motor imagery signals[J]. Journal of Neural Engineering, 2017, 14(1): 016003.
[22] SAKHAVI S, GUAN C, YAN S. Learning temporal infor-mation for brain computer interface using convolutional neu-ral networks[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29: 5619-5629.
[23] ZHU X, LI P, LI C, et al. Separated channel convolutional neural network to realize the training free motor imagery BCI systems[J]. Biomedical Signal Processing and Control, 2019, 49: 396-403.
[24] SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al. Deep learning with convolutional neural net-works for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38: 5391-5420.
[25] AZAB A M, MIHAYLOVA L, ANG K K, et al. Weighted transfer learning for improving motor imagery-based brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27: 1352-1359.
[26] SONG Y, WANG D, YUE K, et al. EEG-based motor ima-gery classification with deep multi-task learning[C]//Procee-dings of the 2019 International Joint Conference on Neural Networks, Budapest, Jul 14-19, 2019. Piscataway: IEEE, 2019: 1-8.
[27] LI Y, ZHANG X R, ZHANG B, et al. A channel-projection mixed-scale convolutional neural network for motor ima-gery EEG decoding[J]. IEEE Transactions on Neural Sys-tems and Rehabilitation Engineering, 2019, 27(6): 1170-1180.
[28] AMIN S U, ALSULAIMAN M, MUHAMMAD G, et al. Deep learning for EEG motor imagery classification based on multi-layer CNN feature fusion[J]. Future Generation Com-puter Systems, 2019, 101: 542-554.
[29] WU H, NIU Y, LI F, et al. A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classi-fication[J]. Frontiers in Neuroscience, 2019, 13: 1275.
[30] INGOLFSSON T M, HERSCHE M, WANG X, et al. EEG-TCNet: an accurate temporal convolutional network for em-bedded motor-imagery brain-machine interfaces[C]//Procee-dings of the 2020 IEEE International Conference on Sys-tems, Man, and Cybernetics, Toronto, Oct 11-14, 2020. Pis-cataway: IEEE, 2020: 2958-2965.
[31] ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[C]//Proceedings of the 2019 International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 7354-7363.
[32] BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for seque-nce modeling[J]. arXiv:1803.01271, 2018.
[33] SHELHAMER E, LONG J, DARRELL T. Fully convolu-tional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pat-tern Recognition, Boston, Jun 8-10, 2015. Piscataway: IEEE, 2015: 3431-3440.
[34] OORD A V D, DIELEMAN S, ZEN H, et al. WaveNet: a generative model for raw audio[J]. arXiv:1609.03499, 2016.
[35] ZHU D, YAO H, JIANG B, et al. Negative log likelihood ratio loss for deep neural network classification[J]. arXiv:1804.10690, 2018.
[36] KINGMA D P, BA J. Adam: a method for stochastic opti-mization[J]. arXiv:1412.6980, 2014.
[37] ZHAO X, ZHANG H, ZHU G, et al. A multi-branch 3D convolutional neural network for EEG-based motor imagery classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(10): 2164-2177.
[38] LIU X, SHEN Y, LIU J, et al. Parallel spatial-temporal self-attention CNN-based motor imagery classification for BCI[J]. Frontiers in Neuroscience, 2020, 14.
[39] SHAHTALEBI S, MOHAMMADI A. Bayesian optimized spectral filters coupled with ternary ECOC for single-trial EEG classification[J]. IEEE Transactions on Neural Systems, 2018, 26(12): 2249-2259.
[40] WANG J, FENG Z, REN X, et al. Feature subset and time segment selection for the classification of EEG data based motor imagery[J]. Biomedical Signal Processing and Control, 2020, 61: 102026.
[41] TANG X, LI W, LI X, et al. Motor imagery EEG recogni-tion based on conditional optimization empirical mode decom-position and multi-scale convolutional neural network[J]. Expert Systems with Applications, 2020, 149: 113285.
[42] LU N, LI T, REN X, et al. A deep learning scheme for motor imagery classification based on restricted Boltzmann machi-nes[J]. IEEE Transactions on Neural Systems and Rehabili-tation Engineering, 2017, 25(6): 566-576.
[43] LUO T J, ZHOU C L, CHAO F. Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network[J]. BMC Bioinformatics, 2018, 19(1): 1-18. |