计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (6): 1405-1416.DOI: 10.3778/j.issn.1673-9418.2111012

• 人工智能·模式识别 • 上一篇    下一篇

融合图小波和注意力机制的交通流预测方法

薛延明,李光辉,齐涛   

  1. 江南大学 人工智能与计算机学院,江苏 无锡 214122
  • 出版日期:2023-06-01 发布日期:2023-06-01

Traffic Prediction Method Integrating Graph Wavelet and Attention Mechanism

XUE Yanming, LI Guanghui, QI Tao   

  1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2023-06-01 Published:2023-06-01

摘要: 交通流预测是现代智能交通系统管理和控制的重要环节。然而,交通流复杂多变,一方面城市道路之间联系性强,另一方面道路交通情况还会随着时间呈现动态变化。近年来有许多研究者尝试利用深度学习方法提取交通流中复杂的结构特征,但是局部特征提取的过程缺乏灵活性,同时忽略了时空特征的动态变化性以及局部和全局时空特征之间的关联性。因此,提出了一种融合图小波和注意力机制的交通流预测方法。该方法采用小波变换和自适应矩阵分别提取交通流局部和全局空间特征信息,并结合改进的循环神经网络提取局部时间特征信息。同时,该方法通过注意力机制来捕获时空动态变化性,并利用一种时空特征融合机制来融合局部和全局时空特征信息。实验结果表明,该方法能很好地提取真实交通数据集中空间和时间特征,预测效果优于现有的方法。

关键词: 图卷积网络, 智能交通系统, 注意力机制, 小波变换, 时空相关性

Abstract: Traffic predicting is a critical component of modern intelligent transportation systems for traffic management and control. However, the traffic flow is complex. On one hand, the urban road structure is highly correlative, and there often exists a nonlinear structural dependence between different roads. On the other hand, traffic flow data often change dynamically over time. In recent years, many studies have tried to use deep learning methods to extract complex structural features in traffic flow. However, the process of local feature extraction still lacks flexibility, and ignores the dynamic variability as well as the correlation of spatio-temporal features. To this end, this paper proposes a new traffic prediction method integrating graph wavelet and attention mechanism. This method uses wavelet transform and an adaptive matrix to extract local and global spatial features of traffic flow respectively, and combines the improved recurrent neural network to extract local temporal characteristic information. Meanwhile, the attention mechanism is adopted in this method to capture the temporal and spatial dynamic variability. Then this method applies a spatio-temporal feature fusion mechanism to fusing local and global temporal and spatial features. Experimental results show that this method can extract spatial and temporal features of real traffic datasets well, and it outperforms the existing methods.

Key words: graph convolutional network, intelligent transportation system, attention mechanism, wavelet transform, spatio-temporal correlation