[1] 任媛, 于红, 杨鹤, 等. 融合注意力机制与BERT+BiLSTM+ CRF模型的渔业标准定量指标识别[J]. 农业工程学报, 2021, 37(10): 135-141.
REN Y, YU H, YANG H, et al. Recognition of quantitative indicator of fishery standard using attention mechanism and the BERT+BiLSTM+CRF model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 37(10): 135-141.
[2] 赵山, 罗睿, 蔡志平. 中文命名实体识别综述[J]. 计算机科学与探索, 2022, 16(2): 296-304.
ZHAO S, LUO R, CAI Z P. Survery of Chinese named entity recognition[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 296-304.
[3] 刘新亮, 张梦琪, 谷情, 等. 基于BERT-CRF模型的生鲜蛋供应链命名实体识别[J]. 农业机械学报, 2021, 52(S1): 519-525.
LIU X L, ZHANG M Q, GU Q, et al. Named entity recog-nition of fresh egg supply chain based on BERT-CRF arch-itecture[J]. Transactions of the Chinese Society of Agricul-tural Machinery, 2021, 52(S1): 519-525.
[4] 羊艳玲, 李燕, 钟昕妤, 等. 基于BiLSTM-CRF的中医医案命名实体识别[J]. 中医药信息, 2021, 38(11): 15-21.
YANG Y L, LI Y, ZHONG X Y, et al. Named entity recognition of TCM medical records based on BiLSTM-CRF[J]. Information on Traditional Chinese Medicine, 2021, 38(11): 15-21.
[5] 许力, 李建华. 基于BERT和BiLSTM-CRF的生物医学命名实体识别[J]. 计算机工程与科学, 2021, 43(10): 1873-1879.
XU L, LI J H. Biomedical named entity recognition based on BERT and BiLSTM-CRF[J]. Computer Engineering and Science, 2021, 43(10): 1873-1879.
[6] 沈同平, 俞磊, 金力, 等. 基于BERT-BiLSTM-CRF模型的中文实体识别研究[J]. 齐齐哈尔大学学报(自然科学版), 2022, 38(1): 26-32.
SHEN T P, YU L, JIN L, et al. Chinese entity recognition based on BERT-BiLSTM-CRF model[J]. Journal of Qiqihar University (Natural Science Edition), 2022, 38(1): 26-32.
[7] MALARKODI C S, LEX E, DEVI S L. Named entity recog-nition for the agricultural domain[J]. Research in Computing Science, 2016, 117(1): 121-132.
[8] GUO X, ZHOU H, SU J, et al. Chinese agricultural disea-ses and pests named entity recognition with multiscale local context features and self-attention mechanism[J]. Computers and Electronics in Agriculture, 2020, 179(5): 105830.
[9] 闫丽华. 基于知识图谱的葡萄病虫害自动问答系统[D]. 咸阳: 西北农林科技大学, 2021.
YAN L H. Automatic question answering system for grape diseases and pests based on knowledge graph[D]. Xian-yang: Northwest Agriculture and Forestry University of Science and Technology, 2021.
[10] 于合龙, 沈金梦, 毕春光, 等. 基于知识图谱的水稻病虫害智能诊断系统[J]. 华南农业大学学报, 2021, 42(5): 105-116.
YU H L, SHEN J M, BI C G, et al. Intelligent diagnosis system for rice diseases and pests based on knowledge graph[J]. Journal of South China Agricultural University, 2021, 42(5): 105-116.
[11] 李悦. 农作物病虫害知识图谱构建研究[D]. 北京: 中国农业科学院, 2021.
LI Y. Research on the construction of knowledge graph of crop diseases and pests[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.
[12] 任妮, 鲍彤, 沈耕宇, 等. 基于深度学习的细粒度命名实体识别研究——以番茄病虫害为例[J]. 情报科学, 2021, 39(11): 96-102.
REN N, BAO T, SHEN G Y, et al. Fine-grained named ent-ity recognition based on deep learning: a case study of tomato diseases and pests[J]. Information Science, 2021, 39(11): 96-102.
[13] 郑泳智, 吴惠粦, 朱定局, 等. 基于荔枝和龙眼病虫害知识图谱的问答系统[J]. 计算机与数字工程, 2021, 49(12): 2618-2622.
ZHENG Y Z, WU H L, ZHU D J, et al. Question and answer system based on the knowledge graphs of litchi and longan diseases and insect pests[J]. Computer & Digital Engineering, 2021, 49(12): 2618-2622.
[14] 杨锦锋, 关毅, 何彬, 等. 中文电子病历命名实体和实体关系语料库构建[J]. 软件学报, 2016, 27(11): 2725-2746.
YANG J F, GUAN Y, HE B, et al. Corpus construction for named entity and entity relations on Chinese electronic medical records[J]. Journal of Software, 2016, 27(11): 2725- 2746.
[15] 沈利言, 姜海燕, 胡滨, 等. 水稻病虫草害与药剂实体关系联合抽取算法[J]. 南京农业大学学报, 2020, 43(6): 1151-1161.
SHEN L Y, JIANG H Y, HU B, et al. A study on joint entity recognition and relation extraction for rice diseases pests weeds and drugs[J]. Journal of Nanjing Agricultural Univer-sity, 2020, 43(6): 1151-1161.
[16] 石教祥, 朱礼军, 望俊成, 等. 面向少量标注数据的命名实体识别研究[J]. 情报工程, 2020, 6(4): 37-50.
SHI J X, ZHU L J, WANG J C, et al. Research on named entity recognition from sparsely labeled data[J]. Technol-ogy Intelligence Engineering, 2020, 6(4): 37-50.
[17] 杨鹤, 于红, 刘巨升, 等. 基于BERT+BiLSTM+CRF深度学习模型和多元组合数据增广的渔业标准命名实体识别[J]. 大连海洋大学学报, 2021, 36(4): 661-669.
YANG H, YU H, LIU J S, et al. Fishery standard named entity recognition based on BERT+BiLSTM+CRF deep learning model and multivariate combination data augmen-tation[J]. Journal of Dalian Ocean University, 2021, 36(4): 661-669.
[18] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient esti-mation of word representations in vector space[J]. arXiv:1301.3781, 2013.
[19] PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-guage Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1532-1543.
[20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008.
[21] DEVLIN J, CHANG M W, LEE K, et al. BERT: pretrai-ning of deep bidirectional transformers for language under-standing[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-putational Linguistics: Human Language Technologies, Min-neapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186.
[22] LAN Z H, CHEN M D, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language represe-ntations[C]//Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020: 1-17.
[23] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[24] GRAVES A, SCHMIDHUBER J. Framewise phoneme class-ification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5/6): 602-610.
[25] LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for seg-menting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning, Wil-liams College, Jun 28-Jul 1, 2001. San Mateo: Morgan Kau-fmann, 2001: 282-289.
|