[1] COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic[J]. Lancet, 2021, 398(10312): 1700-1712.
[2] WEISSKIRCH R S, CROSSMAN K A. The impact of death and dying education for undergraduate students during the COVID-19 pandemic[J]. Omega (Westport), 2022. DOI: 10. 1177/00302228221089818.
[3] WANG X M, HEGDE S, SON C, et al. Investigating mental health of US college students during the COVID-19 pandemic: cross-sectional survey study[J]. Journal of Medical Internet Research, 2020(9): e22817.
[4] TAQUET M, GEDDES J R, HUSAIN M, et al. 6-month neurological and psychiatric outcomes in 236?379 survivors of COVID-19: a retrospective cohort study using electronic health records[J]. Lancet Psychiatry, 2021, 8(5): 416-427.
[5] MCPHERSON A, MARTIN C R. A narrative review of the beck depression inventory (BDI) and implications for its use in an alcohol-dependent population[J]. Journal of Psychiatric and Mental Health Nursing, 2010, 17(1): 19-30.
[6] MCHUGH C M, CORDEROY A, RYAN C J, et al. Association between suicidal ideation and suicide: meta-analyses of odds ratios, sensitivity, specificity and positive predictive value[J]. BJPsych Open, 2019, 5(2): e18.
[7] 贾若男, 王晰巍, 李嘉兴.?突发公共卫生事件中多主体参与的社交网络群体聚类模型[J]. 情报理论与实践, 2022, 45(3): 28-34.
JIA R N, WANG X W, LI J X. A social network group clustering model for multi-subject participation in public health emergencies[J]. Information Studies: Theory and Application, 2022, 45(3): 28-34.
[8] CHANCELLOR S, BIRNBAUM M L, CAINE E D, et al. A taxonomy of ethical tensions in inferring mental health states from social media[C]//Proceedings of the 2019 ACM Conference on Fairness, Accountability, and Transparency, Atlanta, Jan 29-31, 2019. New York: ACM, 2019: 79-88.
[9] VAJRE V, NAYLOR M, KAMATH U, et al. PsychBERT: a mental health language model for social media mental health behavioral analysis[C]//Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine, Dec 9-12, 2021. Piscataway: IEEE, 2021: 1077-1082.
[10] WANG X, ZHANG H J, CAO L, et al. Leverage social media for personalized stress detection[C]//Proceedings of the 28th ACM International Conference on Multimedia, Oct 12-16, 2020. New York: ACM, 2020: 2710-2718.
[11] TURCAN E, MURESAN S, MCKEOWN K. Emotion-infused models for explainable psychological stress detection[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 2895-2909.
[12] GHEISARI M, BAGHSHAH M S. Unsupervised domain adaptation via representation learning and adaptive classifier learning[J]. Neurocomputing, 2015, 165: 300-311.
[13] 孙道凯, 余如英, 吕乐, 等. 重大突发疫情危机背景下大学生焦虑心理及影响与保护性因素[J]. 西南师范大学学报(自然科学版), 2021, 46(10): 121-128.
SUN D Q, YU R Y, LV L, et al. On impact and protective factors of college students?? anxiety under background of major emergency epidemic crisis[J]. Journal of Southwest China Normal University (Natural Science Edition), 2021, 46(10): 121-128.
[14] SAID H, TAWFIK B S, MAKHLOURF M A. A deep learning approach for sentiment classification of COVID-19 vaccination tweets[J]. International Journal of Advanced Computer Science and Applications, 2023, 14(4): 530-538.
[15] RYU M, LEE G, LEE K. Knowledge distillation for BERT unsupervised domain adaptation[J]. Knowledge and Information System, 2022, 64: 3113-3128.
[16] SUN B, SAENKO K. Deep CORAL: correlation alignment for deep domain adaptation[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-16, 2016. Cham: Springer, 2016: 443-450.
[17] PENG X C, BAI Q X, XIA X D, et al. Moment matching for multi-source domain adaptation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1406-1415.
[18] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communication of the ACM, 2014, 63(11): 139-144.
[19] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 2962-2971.
[20] GOU J P, YU B, MAYBANK S J, et al. Knowledge distillation: a survey[J]. International Journal of Computer Vision, 2021, 129(6): 1789-1819.
[21] LIANG B, CHEN Z, GUI L, et al. Zero-shot stance detection via contrastive learning[C]//Proceedings of the 31st ACM Web Conference, Apr 25-29, 2022. New York: ACM, 2022:2738-2747.
[22] OORD A, LI Y, VINYALS O. Representation learning with contrastive predictive coding[EB/OL]. [2023-09-14]. https://arxiv.org/abs/1807.03748.
[23] WANG B, WANG S, CHENG Y, et al. InfoBERT: improving robustness of language models from an information theoretic perspective[C]//Proceedings of the 9th International Conference on Learning Representations, May 3-7, 2021.
[24] VASWANI A, SHAZEER N M, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 2017. Red Hook: Curran Associates Inc., 2017: 5998-6008.
[25] AUGENSTEIN I, ROCKTASCHEL T, VLACHOS A, et al. Stance detection with bidirectional conditional encoding[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-5, 2016. Stroudsburg: ACL, 2016: 876-885.
[26] ALLAWAY E, SRIKANTH M, MCKEOWN K. Adversarial learning for zero-shot stance detection on social media[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 4756-4767.
[27] 张绮钰, 梁美贞, 范依丁, 等. 突发公共卫生事件下高校网络舆情引导策略研究[J]. 产业与科技论坛, 2022, 21(16): 287-288.
ZHANG Q Z, LIANG M Z, FAN Y D, et al. Research on the guidance strategy of university network public opinion under public health emergencies[J]. Industrial and Science Tribune, 2022, 21(16): 287-288.
[28] YEUNG N C Y, LAU J T F, YU N X, et al. Media exposure related to the 2008 Sichuan earthquake predicted probable PTSD among Chinese adolescents in Kunming, China: a longitudinal study[J]. Psychological Trauma: Theory, Research, Practice, and Policy, 2018, 10(2): 253-262.
[29] 闭翠珍, 李文, 李晓凤. 突发公共卫生事件背景下高校大学生心理健康问题研究——以贵州财经大学为例[J]. 西部学刊, 2021(16): 20-22.
BI C Z, LI W, LI X F. Research on the mental health problems of college students under public health emergencies: a case study of Guizhou University of Finance and Economics[J]. West Journal, 2021(16): 20-22. |