[1] 杨昌健, 邓赵红, 蒋亦樟, 等. 基于迁移学习的癫痫EEG信号自适应识别[J]. 计算机科学与探索, 2014, 8(3): 329-337.
YANG C J, DENG Z H, JIANG Y Z, et al. Adaptive recognition of epileptic EEG signals based on transfer learning[J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(3): 329-337.
[2] 谢丽潇, 邓赵红, 史荧中, 等. 面向癫痫EEG自适应识别的迁移径向基神经网络[J]. 计算机科学与探索, 2016, 10(12): 1729-1736.
XIE L X, DENG Z H, SHI Y Z, et al. Transfer radial basis function neural network for adaptive recognition of epileptic EEG signals[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(12): 1729-1736.
[3] 田晓彬, 邓赵红, 王士同. 融合深度和浅层特征的多视角癫痫检测算法[J]. 计算机科学与探索, 2020, 14(10): 1712-1726.
TIAN X B, DENG Z H, WANG S T. Multi-view epilepsy detection algorithm combining deep and shallow features[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(10): 1712-1726.
[4] 黄红红, 张丰, 吕良福, 等. 神经网络算法在癫痫预测模型中的应用研究综述[J]. 计算机科学与探索, 2023, 17(11): 2543-2556.
HUANG H H, ZHANG F, LYU L F, et al. Review of application of neural networks in epileptic seizure prediction[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2543-2556.
[5] GUPTA S, BAGGA S, MAHESHKAR V, et al. Detection of epileptic seizures using EEG signals[C]//Proceedings of the 2020 International Conference on Artificial Intelligence and Signal Processing. Piscataway: IEEE, 2020: 1-5.
[6] XU T, WU Y J, TANG Y Q, et al. Dynamic functional connectivity neural network for epileptic seizure prediction using multi-channel EEG signal[J]. IEEE Signal Processing Letters, 2024, 31: 1499-1503.
[7] XIE L X, DENG Z H, XU P, et al. Generalized hidden-mapping transductive transfer learning for recognition of epileptic electroencephalogram signals[J]. IEEE Transactions on Cybernetics, 2019, 49(6): 2200-2214.
[8] DISSANAYAKE T, FERNANDO T, DENMAN S, et al. Geometric deep learning for subject independent epileptic seizure prediction using scalp EEG signals[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(2): 527-538.
[9] SAHANI M, ROUT S K, DASH P K. Epileptic seizure recognition using reduced deep convolutional stack autoencoder and improved kernel RVFLN from EEG signals[J]. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15(3): 595-605.
[10] JIANG Y Z, ZHANG Y P, LIN C, et al. EEG-based driver drowsiness estimation using an online multi-view and transfer TSK fuzzy system[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1752-1764.
[11] DENG Z H, XU P, XIE L X, et al. Transductive joint-knowledge-transfer TSK FS for recognition of epileptic EEG signals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(8): 1481-1494.
[12] WANG C, QIAN P J, WANG Z H, et al. Multicenter knowledge transfer calibration with rapid zeroth-order TSK fuzzy system for small sample epileptic EEG signals[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(11): 6224-6236.
[13] LI A D, DENG Z H, ZHANG W, et al. Multiview transfer representation learning with TSK fuzzy system for EEG epilepsy detection[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(1): 38-52.
[14] ZHANG Y P, ZHOU Z Y, PAN W J, et al. Epilepsy signal recognition using online transfer TSK fuzzy classifier underlying classification error and joint distribution consensus regularization[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(5): 1667-1678.
[15] ZHOU T, CHUNG F L, WANG S T. Deep TSK fuzzy classifier with stacked generalization and triplely concise interpretability guarantee for large data[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(5): 1207-1221.
[16] ZHANG Y P, ISHIBUCHI H, WANG S T. Deep Takagi-Sugeno-Kang fuzzy classifier with shared linguistic fuzzy rules[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(3): 1535-1549.
[17] QIN B, NOJIMA Y, ISHIBUCHI H, et al. Realizing deep high-order TSK fuzzy classifier by ensembling interpretable zero-order TSK fuzzy subclassifiers[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(11): 3441-3455.
[18] GU S H, CHUNG F L, WANG S T. A novel deep fuzzy classifier by stacking adversarial interpretable TSK fuzzy sub-classifiers with smooth gradient information[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(7): 1369-1382.
[19] QIN B, CHUNG F L, WANG S T. Biologically plausible fuzzy-knowledge-out and its induced wide learning of interpretable TSK fuzzy classifiers[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(7): 1276-1290.
[20] QIN B, CHUNG F L, WANG S T. KAT: a knowledge adversarial training method for zero-order Takagi-Sugeno-Kang fuzzy classifiers[J]. IEEE Transactions on Cybernetics, 2022, 52(7): 6857-6871.
[21] BIAN Z K, ZHANG J, CHUNG F L, et al. Residual sketch learning for a feature-importance-based and linguistically interpretable ensemble classifier[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(8): 10461-10474.
[22] BIAN Z K, ZHANG J, NOJIMA Y, et al. Hybrid-ensemble-based interpretable TSK fuzzy classifier for imbalanced data[J]. Information Fusion, 2023, 98: 101845.
[23] SIGLETOS G, PALIOURAS G, SPYROPOULOS C D, et al. Combining information extraction systems using voting and stacked generalization[J]. Journal of Machine Learning Research, 2005, 6: 1751-1782.
[24] LI F Q, WANG S L, LIEW A W, et al. Large-scale malicious software classification with fuzzified features and boosted fuzzy random forest[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(11): 3205-3218.
[25] KLIEGR T, BAHNíK ?, FüRNKRANZ J. A review of possible effects of cognitive biases on interpretation of rule-based machine learning models[J]. Artificial Intelligence, 2021, 295: 103458.
[26] JIANG Y Z, DENG Z H, CHUNG F L, et al. Recognition of epileptic EEG signals using a novel multiview TSK fuzzy system[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(1): 3-20.
[27] GU S H, NOJIMA Y, ISHIBUCHI H, et al. A novel classification method from the perspective of fuzzy social networks based on physical and implicit style features of data[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(2): 361-375.
[28] TEIXEIRA A R, TOMé A M, STADLTHANNER K, et al. KPCA denoising and the pre-image problem revisited[J]. Digital Signal Processing, 2008, 18(4): 568-580.
[29] EREN L, UNAL M, DEVANEY M J. Harmonic analysis via wavelet packet decomposition using special elliptic half-band filters[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(6): 2289-2293.
[30] SRINIVASAN V, ESWARAN C, SRIRAAM A N. Artificial neural network based epileptic detection using time-domain and frequency-domain features[J]. Journal of Medical Systems, 2005, 29(6): 647-660.
[31] TIBSHIRANI R, SAUNDERS M, ROSSET S, et al. Sparsity and smoothness via the fused lasso[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67(1): 91-108.
[32] ZOU H, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2005, 67(2): 301-320.
[33] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
[34] YE H S, LUO L, ZHANG Z H. Accelerated proximal subsampled Newton method[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(10): 4374-4388.
[35] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]//Advanced applications in pattern recognition. New York: Springer, 1981.
[36] WANG S T, CHUNG F L, WU J, et al. Least learning machine and its experimental studies on regression capability[J]. Applied Soft Computing, 2014, 21: 677-684.
[37] XIE R S, VONG C M, WANG S T. Doubly interpretable fuzzy apriori classifier by successive stacking and one-step wide calculation[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(4): 1653-1667.
[38] XIE R S, CHUNG F L, WANG S T. A cognitively confidence-debiased adversarial fuzzy apriori method[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(3): 1303-1317.
[39] GACTO M J, ALCALá R, HERRERA F. Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures[J]. Information Sciences, 2011, 181(20): 4340-4360.
[40] ZHANG J, BIAN Z K, WANG S T. Shared style linear k nearest neighbor classification method[J]. Expert Systems with Applications, 2024, 241: 122702.
[41] ZHANG J, BIAN Z K, WANG S T. Style linear k-nearest neighbor classification method[J]. Applied Soft Computing, 2024, 150: 111011. |