[1] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 961-971.
[2] GUPTA A, JOHNSON J, LI F F, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2255-2264.
[3] KOSARAJU V, SADEGHIAN A, MARTíN-MARTíN R, et al. Social-BiGAT: multimodal trajectory forecasting using bicycle-GAN and graph attention networks[EB/OL]. [2024-08-19]. https://arxiv.org/abs/1907.03395.
[4] XU K, HU W H, LESKOVEC J, et al. How powerful are graph neural networks?[EB/OL]. [2024-08-19]. https://arxiv. org/abs/1810.00826.
[5] GIULIARI F, HASAN I, CRISTANI M, et al. Transformer networks for trajectory forecasting[C]//Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 10335-10342.
[6] YU C J, MA X, REN J W, et al. Spatio-temporal graph transformer networks for pedestrian trajectory prediction[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 507-523.
[7] YUN S, JEONG M, YOO S, et al. Graph Transformer networks: learning meta-path graphs to improve GNNs[J]. Neural Networks, 2022, 153: 104-119.
[8] PEARSON K. On lines and planes of closest fit to systems of points in space[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901, 2(11): 559-572.
[9] JOLLIFFE I T. Principal component analysis[M]. 2nd ed. New York: Springer, 2002.
[10] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9:2579-2605.
[11] TENENBAUM J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
[12] GOLUB G H, REINSCH C. Singular value decomposition and least squares solutions[M]//Handbook for automatic computation. Berlin, Heidelberg: Springer, 1971: 134-151.
[13] NIE Y Q, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with transformers[EB/OL]. [2024-08-19]. https://arxiv.org/abs/2211.14730.
[14] WU H X, XU J H, WANG J M, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[C]//Advances in Neural Information Processing Systems 34, 2021: 22419-22430.
[15] ZHOU T, MA Z Q, WEN Q S, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[EB/OL]. [2024-08-19]. https://arxiv.org/abs/2201.12740.
[16] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[17] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[18] HUG R, BECKER S, HüBNER W, et al. Bézier curve Gaussian processes[EB/OL]. [2024-08-19]. https://arxiv.org/abs/2205.01754.
[19] HUG R, HüBNER W, ARENS M. Introducing probabilistic Bézier curves for N-step sequence prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(6): 10162-10169.
[20] JAZAYERI M S, JAHANGIRI A. Utilizing B-spline curves and neural networks for vehicle trajectory prediction in an inverse reinforcement learning framework[J]. Journal of Sensor and Actuator Networks, 2022, 11(1): 14.
[21] RAHIMI A, RECHT B. Random features for large-scale kernel machines[C]//Advances in Neural Information Processing Systems 20, 2007: 1177-1184.
[22] BROOMHEAD D S, LOWE D. Multivariable functional interpolation and adaptive networks[J]. Complex Systems, 1988, 2(3): 321-355.
[23] BUHMANN M D. Radial basis functions: theory and implementations[M]. Cambridge: Cambridge University Press, 2003: 208-209.
[24] SHI L S, WANG L, LONG C J, et al. SGCN: sparse graph convolution network for pedestrian trajectory prediction[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8994-9003.
[25] LI S J, ZHOU Y Y, YI J H, et al. Spatial-temporal consistency network for low-latency trajectory forecasting[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 1920-1929.
[26] ZHOU Z K, WANG J P, LI Y, et al. Query-centric trajectory prediction[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 17863-17873.
[27] BAE I, JEON H G. A set of control points conditioned pedestrian trajectory prediction[C]//Proceedings of the 37th AAAI Conference on Artificial Intelligence and the 35th Conference on Innovative Applications of Artificial Intelligence and the 13th Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI, 2023: 6155-6165.
[28] AYDEMIR G, AKAN A K, GüNEY F. ADAPT: efficient multi-agent trajectory prediction with adaptation[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 8261-8271.
[29] GU J R, SUN C, ZHAO H. DenseTNT: end-to-end trajectory prediction from dense goal sets[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15283-15292.
[30] MARCHETTI F, BECATTINI F, SEIDENARI L, et al. SMEMO: social memory for trajectory forecasting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(6): 4410-4425.
[31] ZHAO H, WILDES R P. Where are you heading? Dynamic trajectory prediction with expert goal examples[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 7609-7618.
[32] NAVARRO I, OH J. Social-PatteRNN: socially-aware trajectory prediction guided by motion patterns[C]//Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2022: 9859-9864.
[33] JIA X, CHEN L, WU P, et al. Towards capturing the temporal dynamics for trajectory prediction: a coarse-to-fine approach[C]//Proceedings of the 2022 Conference on Robot Learning, 2023: 910-920.
[34] PELLEGRINI S, ESS A, SCHINDLER K, et al. You??ll never walk alone: modeling social behavior for multi-target tracking[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 261-268.
[35] LERNER A, CHRYSANTHOU Y, LISCHINSKI D. Crowds by example[J]. Computer Graphics Forum, 2007, 26(3): 655-664.
[36] CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11618-11628.
[37] MOHAMED A, QIAN K, ELHOSEINY M, et al. Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14412-14420.
[38] MANGALAM K, GIRASE H, AGARWAL S, et al. It is not the journey but the destination: endpoint conditioned trajectory prediction[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 759-776.
[39] YUAN Y, WENG X S, OU Y L, et al. AgentFormer: agent-aware transformers for socio-temporal multi-agent forecasting[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9793-9803.
[40] BAE I, JEON H G. Disentangled multi-relational graph convolutional network for pedestrian trajectory prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(2): 911-919.
[41] XU C X, TAN R T, TAN Y H, et al. EqMotion: equivariant multi-agent motion prediction with invariant interaction reasoning[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 1410-1420.
[42] MAO W B, XU C X, ZHU Q, et al. Leapfrog diffusion model for stochastic trajectory prediction[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 5517-5526.
[43] GIRGIS R, GOLEMO F, CODEVILLA F, et al. Latent variable sequential set transformers for joint multi-agent motion prediction[EB/OL]. [2024-08-20]. https://arxiv.org/abs/2104.00563.
[44] MOHAMED A, ZHU D Y, VU W, et al. Social-implicit: rethinking trajectory prediction evaluation and the effectiveness of implicit maximum likelihood estimation[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 463-479.
[45] PANG B, ZHAO T Y, XIE X, et al. Trajectory prediction with latent belief energy-based model[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11814-11824. |