[1] 吕建峰, 邵立珍, 雷雪梅. 基于深度神经网络的图像修复算法综述[J]. 计算机工程与应用, 2023, 59(20): 1-12.
LYU J F, SHAO L Z, LEI X M. Image inpainting algorithm based on deep neural networks[J]. Computer Engineering and Applications, 2023, 59(20): 1-12.
[2] YU J H, LIN Z, YANG J M, et al. Generative image inpainting with contextual attention[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5505-5514.
[3] ROUT L, PARULEKAR A, CARAMANIS C, et al. A theoretical justification for image inpainting using denoising diffusion probabilistic models[EB/OL]. [2024-04-23]. https://arxiv.org/abs/2302.01217.
[4] XIE S A, ZHAO Y, XIAO Z S, et al. DreamInpainter: text-guided subject-driven image inpainting with diffusion models[EB/OL]. [2024-04-23]. https://arxiv.org/abs/2312.03771.
[5] CRIMINISI A, PéREZ P, TOYAMA K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004, 13(9): 1200-1212.
[6] WANG W L, JIA Y J. Damaged region filling and evaluation by symmetrical exemplar-based image inpainting for Thangka[J]. EURASIP Journal on Image and Video Processing, 2017(1): 38.
[7] GUO X F, YANG H Y, HUANG D. Image inpainting via conditional texture and structure dual generation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 14114-14123.
[8] 罗海银, 郑钰辉. 图像修复方法研究综述[J]. 计算机科学与探索, 2022, 16(10): 2193-2218.
LUO H Y, ZHENG Y H. Survey of research on image inpainting methods[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2193-2218.
[9] 柏劲咸, 樊瑶, 王帅帅, 等. 基于Transformer结构的图像修复算法研究综述[J]. 计算机仿真, 2024, 41(8): 161-169.
BAI J X, FAN Y, WANG S S, et al. A review of image restoration algorithms based on Transformer structure[J]. Computer Simulation, 2024, 41(8): 161-169.
[10] 徐志刚, 杨欣宇. 结合CSWin-Transformer和门卷积的壁画图像修复方法[J]. 计算机工程与应用, 2024, 60(21): 215-224.
XU Z G, YANG X Y. Mural image restoration method based on CSWin-Transformer and gate convolution[J]. Computer Engineering and Applications, 2024, 60(21): 215-224.
[11] YOU Y L, XU W, TANNENBAUM A, et al. Behavioral analysis of anisotropic diffusion in image processing[J]. IEEE Transactions on Image Processing, 1996, 5(11): 1539-1553.
[12] LIU G L, REDA F A, SHIH K J, et al. Image inpainting for irregular holes using partial convolutions[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 89-105.
[13] LI X G, GUO Q, LIN D, et al. MISF: multi-level interactive siamese filtering for high-fidelity image inpainting[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 1859-1868.
[14] WAN Z Y, ZHANG J B, CHEN D D, et al. High-fidelity pluralistic image completion with transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Com-puter Vision. Piscataway: IEEE, 2021: 4672-4681.
[15] LIU T J, CHEN B W, LIU K H. Lightweight image inpainting by stripe window transformer with joint attention to CNN[EB/OL]. [2024-04-23]. https://arxiv.org/abs/2301.00553.
[16] DENG Y, HUI S Q, ZHOU S P, et al. T-former: an efficient transformer for image inpainting[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 6559-6568.
[17] WANG J K, CHEN S X, WU Z X, et al. FT-TDR: frequency-guided transformer and top-down refinement network for blind face inpainting[J]. IEEE Transactions on Multimedia, 2022, 25: 2382-2392.
[18] LI W B, LIN Z, ZHOU K, et al. MAT: mask-aware transformer for large hole image inpainting[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 10748-10758.
[19] YU Y C, ZHAN F N, WU R L, et al. Diverse image inpainting with bidirectional and autoregressive transformers[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 69-78.
[20] LI L X, ZOU Q, ZHANG F, et al. Line drawing guided progressive inpainting of mural damage[EB/OL]. [2024-05-10]. https://arxiv.org/abs/2211.06649.
[21] YU J H, LIN Z, YANG J M, et al. Free-form image inpainting with gated convolution[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 4470-4479.
[22] ZHANG H R, HU Z Z, LUO C Z, et al. Semantic image inpainting with progressive generative networks[C]//Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 1939-1947.
[23] MA Z C, WANG Y X, REZA TOHIDYPOUR H, et al. Enhancing image quality by reducing compression artifacts using dynamic window swin transformer[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2024, 14(2): 275-285.
[24] FAN Y, SHI Y N, ZHANG N J, et al. Image inpainting based on structural constraint and multi-scale feature fusion[J]. IEEE Access, 2023, 11: 16567-16587.
[25] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[26] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[27] 朱凯, 李理, 张彤, 等. 基于Transformer的多阶段运动模糊图像修复网络[J]. 计算机工程, 2024, 50(9): 276-285.
ZHU K, LI L, ZHANG T, et al. Multi-stage motion blur image inpainting network based on Transformer[J]. Computer Engineering, 2024, 50(9): 276-285.
[28] DONG Q L, CAO C J, FU Y W. Incremental transformer structure enhanced image inpainting with masking positional encoding[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11348-11358.
[29] 欧静, 文志诚, 邓文贵, 等. 利用边缘条件的多特征融合图像修复算法[J]. 计算机工程与应用, 2023, 59(23): 191-201.
OU J, WEN Z C, DENG W G, et al. Research on multi-feature fusion image restoration based on edge conditions[J]. Computer Engineering and Applications, 2023, 59(23): 191-201.
[30] RONG W B, LI Z J, ZHANG W, et al. An improved Canny edge detection algorithm[C]//Proceedings of the 2014 IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE, 2014: 577-582.
[31] MATEEN M, WEN J H, NASRULLAH, et al. Fundus image classification using VGG-19 architecture with PCA and SVD[J]. Symmetry, 2019, 11(1): 1.
[32] ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5967-5976.
[33] LIU H Y, JIANG B, XIAO Y, et al. Coherent semantic attention for image inpainting[C]//Proceedings of the 2019 IEEE/ CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 4170-4179.
[34] LI J Y, WANG N, ZHANG L F, et al. Recurrent feature reasoning for image inpainting[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7757-7765.
[35] QUAN W Z, ZHANG R S, ZHANG Y, et al. Image inpainting with local and global refinement[J]. IEEE Transactions on Image Processing, 2022, 31: 2405-2420.
[36] 陈刚, 盛况, 杨振国, 等. 傅里叶变换下的粗细双路径图像修复算法[J]. 计算机工程与应用, 2024, 60(1): 217-226.
CHEN G, SHENG K, YANG Z G, et al. Coarse and fine dual path image inpainting algorithm based on Fourier transform[J]. Computer Engineering and Applications, 2024, 60(1): 217-226. |