[1] MINU K, LIMEESH M, JOHN C J. Wavelet neural networks for nonlinear time series analysis[J]. Applied Mathematical Sciences, 2010, 4: 2485-2495.
[2] LIU Q, WU S, WANG L, et al. Predicting the next location: a recurrent model with spatial and temporal contexts[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 194-200.
[3] MENG X, NIE L Y, SONG J P. Big data-based prediction of terrorist attacks[J]. Computers & Electrical Engineering, 2019, 77: 120-127.
[4] UDDIN M I, ZADA N, AZIZ F, et al. Prediction of future terrorist activities using deep neural networks[J]. Complexity, 2020(1): 1373087.
[5] VERMA C, MALHOTRA S, VERMA V. Predictive modeling of terrorist attacks using machine learning[J]. International Journal of Pure and Applied Mathematics, 2018, 119(15): 6-12.
[6] HUANG S L. Regional terrorism-related safety risk evaluation and its determinants research based on DRF-KPCA and nonlinear panel model[J]. Advances in Applied Mathematics, 2021, 10(4): 974-988.
[7] HAO M M, JIANG D, DING F Y, et al. Simulating spatio-temporal patterns of terrorism incidents on the Indochina Peninsula with GIS and the random forest method[J]. ISPRS International Journal of Geo-Information, 2019, 8(3): 133.
[8] WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 950-958.
[9] CLARK N J, DIXON P M. Modeling and estimation for self-exciting spatio-temporal models of terrorist activity[J]. The Annals of Applied Statistics, 2018, 12(1): 633-653.
[10] ALVES L G A, RIBEIRO H V, RODRIGUES F A. Crime prediction through urban metrics and statistical learning[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 505: 435-443.
[11] CHAINEY S, TOMPSON L, UHLIG S. The utility of hotspot mapping for predicting spatial patterns of crime[J]. Security Journal, 2008, 21(1): 4-28.
[12] 罗澜峻, 祁超, 王红卫, 等. 基于LSTM模型的恐怖袭击事件发生时间预测[J]. 系统工程学报, 2020, 35(2): 163-172.
LUO L J, QI C, WANG H W, et al. Prediction of terrorist attack events time based on LSTM model[J]. Journal of Systems Engineering, 2020, 35(2): 163-172.
[13] LIN Z K, DOU Y M, LI J P. Analysis model of terrorist attacks based on big data[C]//Proceedings of the 2020 Chinese Control and Decision Conference. Piscataway: IEEE, 2020: 3622-3628.
[14] 赵晔辉, 柳林, 王海龙, 等. 知识图谱推荐系统研究综述[J]. 计算机科学与探索, 2023, 17(4): 771-791.
ZHAO Y H, LIU L, WANG H L, et al. Survey of know-ledge graph recommendation system research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 771-791.
[15] YU X, REN X, GU Q Q, et al. Collaborative filtering with entity similarity regularization in heterogeneous information networks[C]//Proceedings of the IJCAI-13 HINA Workshop, 2013: 2612-2618.
[16] ZHANG S, WANG W H, FORD J, et al. Learning from incomplete ratings using non-negative matrix factorization[C]//Proceedings of the 2006 SIAM International Conference on Data Mining, 2006: 549-553.
[17] YU X, REN X, SUN Y Z, et al. Recommendation in heterogeneous information networks with implicit user feedback[C]//Proceedings of the 7th ACM Conference on Recommender Systems. New York: ACM, 2013: 347-350.
[18] YU X, REN X, SUN Y Z, et al. Personalized entity recommendation: a heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 283-292.
[19] SHI C, ZHANG Z Q, LUO P, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York: ACM, 2015: 453-462.
[20] XIAN Y K, FU Z H, MUTHUKRISHNAN S, et al. Reinforcement knowledge graph reasoning for explainable recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 285-294.
[21] 田萱, 陈杭雪. 推荐任务中知识图谱嵌入应用研究综述[J]. 计算机科学与探索, 2022, 16(8): 1681-1705.
TIAN X, CHEN H X. Survey on applications of knowledge graph embedding in recommendation tasks[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1681-1705.
[22] ANTOINE B, NICOLAS U, ALBERTO G, et al. Transla-ting embeddings for modeling multi-relational data[C]//Advances?in?Neural?Information?Processing?Systems?26,?2013: 2787-2795.
[23] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28(1): 1112-1119.
[24] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2015, 29(1): 2181-2187.
[25] JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 687-696.
[26] YANG B S, YIH W, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. [2024-04-10]. https://arxiv.org/abs/1412.6575.
[27] ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362.
[28] WANG H W, ZHANG F Z, HOU M, et al. SHINE: signed heterogeneous information network embedding for sentiment link prediction[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 592-600.
[29] YANG D Q, GUO Z K, WANG Z Y, et al. A knowledge-enhanced deep recommendation framework incorporating GAN-based models[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 1368-1373.
[30] CAO Y X, WANG X, HE X N, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 151-161.
[31] WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426.
[32] TANG X L, WANG T Y, YANG H Z, et al. AKUPM: attention-enhanced knowledge-aware user preference model for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1891-1899.
[33] QU Y R, BAI T, ZHANG W N, et al. An end-to-end neighborhood-based interaction model for knowledge-enhanced recommendation[C]//Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data. New York: ACM, 2019: 1-9.
[34] 王旭, 庞巍, 王喆. 异构信息网络中基于元结构的协同过滤算法[J]. 计算机科学, 2019, 46(S1): 397-401.
WANG X, PANG W, WANG Z. MetaStruct-CF: a meta structure based collaborative filtering algorithm in heterogeneous information networks[J]. Computer Science, 2019, 46(S1): 397-401.
[35] 杨玉基, 许斌, 胡家威, 等. 一种准确而高效的领域知识图谱构建方法[J]. 软件学报, 2018, 29(10): 2931-2947.
YANG Y J, XU B, HU J W, et al. Accurate and efficient method for constructing domain knowledge graph[J]. Journal of Software, 2018, 29(10): 2931-2947.
[36] 许鑫冉, 王腾宇, 鲁才. 图神经网络在知识图谱构建与应用中的研究进展[J]. 计算机科学与探索, 2023, 17(10): 2278-2299.
XU X R, WANG T Y, LU C. Research progress of graph neural network in knowledge graph construction and application[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2278-2299.
[37] THOMAS N K, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, 2017.
[38] WILLIAM L H, REX Y, JURE L. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems 30, 2017: 1024-1034.
[39] AL M, AY H, AY N. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of the 30th International Conference on Machine Learning, 2013: 3-8.
[40] STEFFEN R, CHRISTOPH F, ZENO G, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 2012 Conference on Uncertainty in Artificial Intelligence, 2012: 452-461.
[41] HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 2017 Web Conference, 2017: 173-182.
[42] YANG J H, CHEN C M, WANG C J, et al. HOP-Rec: high-order proximity for implicit recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018: 140-144.
[43] AI Q Y, AZIZI V, CHEN X, et al. Learning heterogeneous knowledge base embeddings for explainable recommendation[J]. Algorithms, 2018, 11(9): 137.
[44] STEFFEN R, ZENO G, CHRISTOPH F, et al. Fast context-aware recommendations with factorization machines[C]// Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2011: 635-644.
[45] YANG Y H, HUANG C, XIA L H, et al. Knowledge graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1434-1443. |