
计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (7): 1747-1770.DOI: 10.3778/j.issn.1673-9418.2408046
刘广腾,王峰,吴中博
出版日期:2025-07-01
发布日期:2025-06-30
LIU Guangteng, WANG Feng, WU Zhongbo
Online:2025-07-01
Published:2025-06-30
摘要: 随着移动互联网和位置服务的迅速发展,基于位置的社交网络已成为用户日常生活的一部分。深度学习技术,尤其是基于注意力机制和图神经网络的模型,在预测用户未来可能访问地点的下一个兴趣点推荐任务中取得了显著突破。系统回顾了过去五年内下一个兴趣点推荐算法的研究进展,重点分析了注意力机制和图神经网络在该领域的应用。介绍了相关技术的基础理论,包括注意力机制和图神经网络的基本原理及其在时空数据中的优势。通过对不同方法的优缺点进行深入比较和分析,总结了当前该领域所面临的主要挑战。详细介绍并比较了常用的下一个兴趣点推荐数据集(如Foursquare、Gowalla),并探讨了在实际应用中如何选择和利用这些数据集。讨论了推荐算法中常用的评价指标(如准确率、召回率)。展望了未来的研究方向,并提出了多种可能优化下一个兴趣点推荐算法性能的策略,包括解决深度模型中的数据稀疏性问题,提升模型可解释性,以及应对冷启动问题等。
刘广腾, 王峰, 吴中博. 下一个兴趣点推荐算法综述[J]. 计算机科学与探索, 2025, 19(7): 1747-1770.
LIU Guangteng, WANG Feng, WU Zhongbo. Survey on Next Point-of-Interest Recommendation Algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1747-1770.
| [1] WARREN J, MARZ N. Big data: principles and best practices of scalable realtime data systems[M]. [S.l.]: Simon and Schuster, 2015. [2] HALDER S, LIM K H, CHAN J, et al. Transformer-based multi-task learning for queuing time aware next POI recommendation[C]//Proceedings of the 25th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Cham: Springer, 2021: 510-523. [3] HALDER S, LIM K H, CHAN J, et al. POI recommendation with queuing time and user interest awareness[J]. Data Mining and Knowledge Discovery, 2022, 36(6): 2379-2409. [4] CAO G, CUI S M, JOE I. Improving the spatial-temporal aware attention network with dynamic trajectory graph learning for next point-of-interest recommendation[J]. Information Processing & Management, 2023, 60(3): 103335. [5] LIU Y W, WU H P, REZAEE K, et al. Interaction-enhanced and time-aware graph convolutional network for successive point-of-interest recommendation in traveling enterprises[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 635-643. [6] XIE J Y, CHEN Z Z. Hierarchical transformer with spatio-temporal context aggregation for next point-of-interest recommendation[J]. ACM Transactions on Information Systems, 2024, 42(2): 1-30. [7] WU J Y, LI H, YANG C, et al. MGTIPM: a multi-granularity time intention prediction model for next point-of-interest recommendation[C]//Proceedings of the 2023 11th International Conference on Agro-Geoinformatics. Piscataway: IEEE, 2023: 1-5. [8] CHENG X H, LI N, RYSBAYEVA G, et al. Influence-aware successive point-of-interest recommendation[J]. World Wide Web, 2023, 26(2): 615-629. [9] HUANG L W, MA Y T, WANG S B, et al. An attention-based spatiotemporal LSTM network for next POI recommendation[J]. IEEE Transactions on Services Computing, 2021, 14(6): 1585-1597. [10] ZHANG L, SUN Z, WU Z Q, et al. Next point-of-interest recommendation with inferring multi-step future preferences[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, 2022: 3751-3757. [11] WAN L, WANG H, HONG Y M, et al. iTourSPOT: a context-aware framework for next POI recommendation in location-based social networks[J]. International Journal of Digital Earth, 2022, 15(1): 1614-1636. [12] YANG Q, HU S Y, ZHANG W X, et al. Attention mechanism and adaptive convolution actuated fusion network for next POI recommendation[J]. International Journal of Intelligent Systems, 2022, 37(10): 7888-7908. [13] HUANG T H, PAN X, CAI X R, et al. Learning time slot preferences via mobility tree for next POI recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(8): 8535-8543. [14] LI C H, HAO Y J, ZHAO P P, et al. Tell me where to go next: improving POI recommendation via conversation[C]//Proceedings of the 26th International Conference on Database Systems for Advanced Applications. Cham: Springer, 2021: 211-227. [15] TIAN J, ZHAO Z L, DING Z M. Next point-of-interest recommendation based on joint mining of spatial-temporal and semantic sequential patterns[J]. ISPRS International Journal of Geo-Information, 2023, 12(7): 297. [16] CUI Q, ZHANG C R, ZHANG Y F, et al. ST-PIL: spatial-temporal periodic interest learning for next point-of-interest recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 2960-2964. [17] HUANG Y H, LAN P X, LI X K, et al. Residual spatio-temporal collaborative networks for next POI recommendation[C]//Proceedings of the 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Singapore: Springer, 2024: 144-155. [18] LI X X, HU R M, WANG Z. Next-point-of-interest recommendation based on joint mining of regularity and randomness[J]. Knowledge-Based Systems, 2022, 258: 110052. [19] WU Y X, LI K, ZHAO G S, et al. Personalized long- and short-term preference learning for next POI recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(4): 1944-1957. [20] LIU T C, LIAO J X, WU Z G, et al. Exploiting geographical-temporal awareness attention for next point-of-interest recommendation[J]. Neurocomputing, 2020, 400: 227-237. [21] ZHENG C W, TAO D, WANG J T, et al. Memory augmented hierarchical attention network for next point-of-interest recommendation[J]. IEEE Transactions on Computational Social Systems, 2021, 8(2): 489-499. [22] ZHANG Y H, LAN P X, WANG Y H, et al. Spatio-temporal mogrifier LSTM and attention network for next POI recommendation[C]//Proceedings of the 2022 IEEE International Conference on Web Services. Piscataway: IEEE, 2022: 17-26. [23] WANG Z W, ZENG J, WEN J H, et al. Point-of-interest recommendation using deep semantic model[J]. Expert Systems with Applications, 2023, 231: 120727. [24] YANG K, YANG Y, GAO Q, et al. Self-explainable next POI recommendation[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2024: 2619-2623. [25] ZHANG L, SUN Z, ZHANG J, et al. Conversation-based adaptive relational translation method for next POI recommendation with uncertain check-ins[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7810-7823. [26] ZHANG L, SUN Z, ZHANG J, et al. An interactive multi-task learning framework for next POI recommendation with uncertain check-ins[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020: 3551-3557. [27] ZHANG M W, YANG Y, ABBAS R, et al. SNPR: a serendipity-oriented next POI recommendation model[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 2568-2577. [28] HE Y H, ZHOU W, LUO F J, et al. Feature-based POI grouping with transformer for next point of interest recommendation[J]. Applied Soft Computing, 2023, 147: 110754. [29] ZHENG Y S, ZHOU X. Capturing fine and coarse grained user preferences with dual-transformer for next POI recommendation[C]//Proceedings of the 8th International Joint Conference on Web and Big Data. Singapore: Springer, 2024: 359-373. [30] WANG D J, WAN F, YU D J, et al. Context-and category-aware double self-attention model for next POI recommendation[J]. Applied Intelligence, 2023, 53(15): 18355-18380. [31] WANG X Y, LIU Y H, ZHOU X, et al. Next POI recommendation method based on category preference and attention mechanism in LBSNs[C]//Proceedings of the 6th International Joint Conference on Web and Big Data. Cham: Springer, 2023: 12-19. [32] XU Y, CONG G, ZHU L, et al. MMPOI: a multi-modal content-aware framework for POI recommendations[C]//Proceedings of the ACM Web Conference 2024. New York: ACM, 2024: 3454-3463. [33] YIN F Y, LIU Y, SHEN Z Q, et al. Next POI recommendation with dynamic graph and explicit dependency[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(4): 4827-4834. [34] ZHUANG Z, WEI T X, LIU L B, et al. TAU: trajectory data augmentation with uncertainty for next POI recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(20): 22565-22573. [35] WANG J Z, ZHANG L, SUN Z, et al. Meta-learning enhanced next POI recommendation by leveraging check-ins from auxiliary cities[C]//Proceedings of the 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2023: 322-334. [36] SUN H M, XU J J, ZHOU R, et al. HOPE: a hybrid deep neural model for out-of-town next POI recommendation[J]. World Wide Web, 2021, 24(5): 1749-1768. [37] ZHAO K Z, ZHANG Y, YIN H Z, et al. Discovering subsequence patterns for next POI recommendation[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020: 3216-3222. [38] ZUO J K, ZHANG Y Y. Collaborative trajectory representation for enhanced next POI recommendation[J]. Expert Systems with Applications, 2024, 256: 124884. [39] WANG Z W, ZENG J, ZHONG L, et al. DSDRec: next POI recommendation using deep semantic extraction and diffusion model[J]. Information Sciences, 2024, 678: 121004. [40] ZHENG Y S, ZHOU X. Modeling multi-factor user preferences based on transformer for next point of interest recommen-dation[J]. Expert Systems with Applications, 2024, 255: 124894. [41] SUN Z, LEI Y, ZHANG L, et al. A multi-channel next POI recommendation framework with multi-granularity check-in signals[J]. ACM Transactions on Information Systems, 2024, 42(1): 1-28. [42] LI H, YUE P, LI S C, et al. Spatio-temporal intention learning for recommendation of next point-of-interest[J]. Geo-spatial Information Science, 2024, 27(2): 384-397. [43] FENG S S, MENG F Y, CHEN L S, et al. ROTAN: a rotation-based temporal attention network for time-specific next POI recommendation[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 759-770. [44] QIAN X Y, HAO Y J, XIAN X F, et al. Enhancing spatio-temporal semantics with contrastive learning for next POI recommendation[C]//Proceedings of the 8th International Joint Conference on Web and Big Data. Singapore: Springer, 2024: 374-389. [45] JEON J, KANG S, JO M, et al. LightMove: a lightweight next-POI recommendation for Taxicab rooftop advertising[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 3857-3866. [46] DUAN C H, FAN W, ZHOU W, et al. CLSPRec: contrastive learning of long and short-term preferences for next POI recommendation[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 473-482. [47] SUN X, LV Z M. Exploring nonlinear spatiotemporal effects for personalized next point-of-interest recommendation[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(9): 1273-1286. [48] LIU Y W, PEI A X, WANG F, et al. An attention-based category-aware GRU model for the next POI recommendation[J]. International Journal of Intelligent Systems, 2021, 36(7): 3174-3189. [49] BAHDANAU D. Neural machine translation by jointly lear-ning to align and translate[EB/OL]. [2024-07-12]. https://arxiv.org/abs/1409.0473. [50] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [51] HAN S Y, MA Z B, ZHAO W, et al. Neighbor-discovery recurrent model for point-of-interest recommendation[C]//Proceedings of the 2023 6th International Conference on Big Data Technologies. New York: ACM, 2023: 52-59. [52] WANG Z B, ZHU Y M, LIU H B, et al. Learning graph-based disentangled representations for next POI recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1154-1163. [53] XU X H, SUZUMURA T, YONG J W, et al. Revisiting mobility modeling with graph: a graph transformer model for next point-of-interest recommendation[C]//Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems. New York: ACM, 2023: 1-10. [54] WU J Z, ZHANG Y J, LI Y H, et al. SSTP: social and spatial-temporal aware next point-of-interest recommendation[J]. Data Science and Engineering, 2023, 8(4): 329-343. [55] LUO Y T, LIU Q, LIU Z C. STAN: spatio-temporal attention network for next location recommendation[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 2177-2185. [56] YAN X D, SONG T W, JIAO Y F, et al. Spatio-temporal hypergraph learning for next POI recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 403-412. [57] AN J M, GAO M, TANG J F. MvStHgL: multi-view hypergraph learning with spatial-temporal periodic interests for next POI recommendation[J]. ACM Transactions on Information Systems, 2024, 42(6): 1-29. [58] KUMAR A, JAIN D K, MALLIK A, et al. Modified node2vec and attention based fusion framework for next POI recommendation[J]. Information Fusion, 2024, 101: 101998. [59] JU W, QIN Y F, QIAO Z Y, et al. Kernel-based substructure exploration for next POI recommendation[C]//Proceedings of the 2022 IEEE International Conference on Data Mining. Piscataway: IEEE, 2022: 221-230. [60] LI Y H, ZHANG Z W, HUANG Z, et al. MoveFormer: spatial graph periodic injection network for next POI recommendation[M]//Knowledge science, engineering and management. Singapore: Springer, 2024: 41-57. [61] WANG L, WU S, LIU Q, et al. Bi-level graph structure learning for next POI recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(11): 5695-5708. [62] YANG S, LIU J M, ZHAO K Q. GETNext: trajectory flow map enhanced transformer for next POI recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1144-1153. [63] ZHOU H L, JIA Z H, ZHU H Y, et al. CLLP: contrastive learning framework based on latent preferences for next POI recommendation[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2024: 1473-1482. [64] ZHANG X, LIU D A, YAN L, et al. Graph-enhanced spatio-temporal interval aware network for next POI recommendation in mobile environment[J]. Journal of Internet Technology, 2024, 25(4): 619-628. [65] YANG Y X, ZHOU S Y, WENG H, et al. Siamese learning based on graph differential equation for next-POI recommendation[J]. Applied Soft Computing, 2024, 150: 111086. [66] ELMI S, TAN K L. Next POIs prediction for group recommendations: influence-based deep learning model[M]//Database and expert systems applications. Cham: Springer, 2023: 295-309. [67] ZHOU S Y, ZHU J H, XI H R, et al. Heterogeneous graph based long- and short-term preference learning model for next POI recommendation[C]//Proceedings of the 22nd International Conference on Algorithms and Architectures for Parallel Processing. Cham: Springer, 2022: 455-470. [68] WANG X L, WANG D J, YU D J, et al. Intent-aware graph neural network for point-of-interest embedding and recommendation[J]. Neurocomputing, 2023, 557: 126734. [69] WANG J K, YANG B, LIU H D, et al. Global spatio-temporal aware graph neural network for next point-of-interest recommendation[J]. Applied Intelligence, 2023, 53(13): 16762-16775. [70] GAN M X, TAN C P. Mining multiple sequential patterns through multi-graph representation for next point-of-interest recommendation[J]. World Wide Web, 2023, 26(4): 1345-1370. [71] TAO H J, ZENG J, WANG Z W, et al. Next POI recommendation based on spatial and temporal disentanglement representation[C]//Proceedings of the 2023 IEEE International Conference on Web Services. Piscataway: IEEE, 2023: 84-90. [72] KONG X J, CHEN Z Y, LI J X, et al. KGNext: knowledge-graph-enhanced transformer for next POI recommendation with uncertain check-ins[J]. IEEE Transactions on Computational Social Systems, 2024, 11(5): 6637-6648. [73] 王永贵, 张小锐. 基于GT模型的多编码下一个兴趣点推荐模型[J]. 计算机应用研究, 2024, 41(11): 3382-3388. WANG Y G, ZHANG X R. Multi-coding next point of interest recommendation model based on GT model[J]. Application Research of Computers, 2024, 41(11): 3382-3388. [74] 郭秉璇, 杨晓文, 孙福盛, 等. 融合人群移动轨迹和时空-类别的下一个兴趣点推荐[J]. 计算机工程与应用, 2025, 61(2): 316-326. GUO B X, YANG X W, SUN F S, et al. Next point of interest recommendation fusing crowd movement trajectories and spatiotemporal-category features[J]. Computer Engineering and Applications, 2025, 61(2): 316-326. [75] WANG Z B, ZHU Y M, WANG C Y, et al. Adaptive graph representation learning for next POI recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 393-402. [76] WANG T C, LAI Y T, CHEN G D, et al. A dynamic-aware heterogeneous graph neural network for next POI recommendation[C]//Proceedings of the 20th Pacific Rim International Conference on Artificial Intelligence: Trends in Artificial Intelligence. Singapore: Springer, 2023: 313-326. [77] SUN Z, LI C, LEI Y, et al. Point-of-interest recommendation for users-businesses with uncertain check-ins[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(12): 5925-5938. [78] CHEN W, WAN H Y, GUO S N, et al. Building and exploiting spatial-temporal knowledge graph for next POI recommendation[J]. Knowledge-Based Systems, 2022, 258: 109951. [79] KIM J, JEONG S, PARK G, et al. DynaPosGNN: dynamic-positional GNN for next POI recommendation[C]//Proceedings of the 2021 International Conference on Data Mining Workshops. Piscataway: IEEE, 2021: 36-44. [80] LIU T C, LIAO J X, WU Z G, et al. A geographical-temporal awareness hierarchical attention network for next point-of-interest recommendation[C]//Proceedings of the 2019 on International Conference on Multimedia Retrieval. New York: ACM, 2019: 7-15. [81] ZUO J K, ZHANG Y Y. Diff-DGMN: a diffusion-based dual graph multiattention network for POI recommendation[J]. IEEE Internet of Things Journal, 2024, 11(23): 38393-38409. [82] HUANG L W, MA Y T, LIU Y B, et al. DAN-SNR: a deep attentive network for social-aware next point-of-interest recommendation[J]. ACM Transactions on Internet Technology, 2021, 21(1): 1-27. [83] LI Y, CHEN T, LUO Y D, et al. Discovering collaborative signals for next POI recommendation with iterative Seq2Graph augmentation[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence, 2021: 1491-1497. [84] KHAN I, SADAD A, ALI G, et al. NPR-LBN: next point of interest recommendation using large bipartite networks with edge and cloud computing[J]. Journal of Cloud Computing, 2023, 12(1): 54. [85] HE X, HE W K, LIU Y L, et al. ImNext: irregular interval attention and multi-task learning for next POI recommendation[J]. Knowledge-Based Systems, 2024, 293: 111674. [86] LAI Y T, SU Y J, WEI L W, et al. Disentangled contrastive hypergraph learning for next POI recommendation[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2024: 1452-1462. [87] LONG J, YE G H, CHEN T, et al. Diffusion-based cloud-edge-device collaborative learning for next POI recommendations[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2024: 2026-2036. [88] LIU X Q, LI X Y, CAO Y, et al. Mandari: multi-modal temporal knowledge graph-aware sub-graph embedding for next-POI recommendation[C]//Proceedings of the 2023 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2023: 1529-1534. [89] SUN X X, HUANG B Y, WANG X F, et al. MARAN: supporting awareness of users?? routines and preferences for next POI recommendation based on spatial aggregation[J]. Expert Systems with Applications, 2024, 238: 121961. [90] WANG X, LIU X, LI L, et al. Time-aware user modeling with check-in time prediction for next POI recommendation[C]//Proceedings of the 2021 IEEE International Conference on Web Services. Piscataway: IEEE, 2021: 125-134. [91] LIM N, HOOI B, NG S K, et al. Hierarchical multi-task graph recurrent network for next POI recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1133-1143. [92] HUANG Z, MA J, DONG Y S, et al. Empowering next POI recommendation with multi-relational modeling[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 2034-2038. [93] DU J F, ZHOU S L, YU J, et al. Cross-task multimodal reinforcement for long tail next POI recommendation[J]. IEEE Transactions on Multimedia, 2023, 26: 1996-2005. [94] ZHANG J X, LI Y K, ZOU R T, et al. Hyper-relational knowledge graph neural network for next POI recommendation[J]. World Wide Web, 2024, 27(4): 46. [95] LAI Y T, SU Y J, WEI L W, et al. Multi-view spatial-temporal enhanced hypergraph network for next POI recommendation[C]//Proceedings of the 28th International Conference on Database Systems for Advanced Applications. Cham: Springer, 2023: 237-252. [96] LAI Y T, SU Y J, WEI L W, et al. Adaptive spatial-temporal hypergraph fusion learning for next POI recommendation[C]//Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2024: 7320-7324. [97] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2024-07-20]. https://arxiv.org/abs/1609.02907. [98] HAN J, YAMANA H. Geographic diversification of recommended POIs in frequently visited areas[J]. ACM Transactions on Information Systems, 2020, 38(1): 1-39. [99] CHO E, MYERS S A, LESKOVEC J. Friendship and mobility: user movement in location-based social networks[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011: 1082-1090. [100] SARWAT M, LEVANDOSKI J J, ELDAWY A, et al. LARS*: an efficient and scalable location-aware recommender system[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(6): 1384-1399. [101] LEVANDOSKI J J, SARWAT M, ELDAWY A, et al. LARS: a location-aware recommender system[C]//Proceedings of the 2012 IEEE 28th International Conference on Data Engineering. Piscataway: IEEE, 2012: 450-461. [102] YANG D Q, ZHANG D Q, ZHENG V W, et al. Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(1): 129-142. [103] YANG D Q, ZHANG D Q, QU B Q. Participatory cultural mapping based on collective behavior data in location-based social networks[J]. ACM Transactions on Intelligent Systems and Technology, 2016, 7(3): 1-23. [104] YANG D, ZHANG D, QU B, et al. PrivCheck: privacy-preserving check-in data publishing for personalized location based services[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016: 545-556. [105] YANG D Q, QU B Q, YANG J, et al. Revisiting user mobility and social relationships in LBSNs: a hypergraph embedding approach[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2147-2157. [106] YANG D, QU B, YANG J, et al. LBSN2Vec++: heterogeneous hypergraph embedding for location-based social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(4): 1843-1855. |
| [1] | 石计亮, 张乾, 杨思红, 刘霜, 滕林, 柏武贰. 图像平滑结构引导的图像修复[J]. 计算机科学与探索, 2025, 19(8): 2149-2160. |
| [2] | 闵锋, 刘宇卓, 刘煜晖, 刘彪. 基于时域频域混合特征的多变量时序预测模型[J]. 计算机科学与探索, 2025, 19(8): 2099-2109. |
| [3] | 冯勇, 栾超杰, 王嵘冰, 徐红艳, 张永刚. 聚合全局交互与局部交互的知识图谱补全[J]. 计算机科学与探索, 2025, 19(7): 1909-1917. |
| [4] | 韩竹轩, 卜凡亮, 侯智文, 齐彬廷, 曹恩奇. 改进KGAT的恐怖组织空间行为预测方法[J]. 计算机科学与探索, 2025, 19(7): 1918-1930. |
| [5] | 曹岩, 辛子昊, 邬开俊, 单宏全, 郭炳森. BMTA:多元场景下的大面积破损图像修复[J]. 计算机科学与探索, 2025, 19(6): 1553-1563. |
| [6] | 沙潇, 王建文, 丁建川, 徐笑然. 融合层级知识图谱嵌入与注意力机制的推荐方法[J]. 计算机科学与探索, 2025, 19(6): 1508-1521. |
| [7] | 李云飞, 魏霞, 蔡鑫, 吕明昱, 罗相涵. TCTP-YOLO:盲人出行的典型障碍物及交通标志检测方法[J]. 计算机科学与探索, 2025, 19(6): 1540-1552. |
| [8] | 胡仲则, 秦宏超, 李振军, 李艳辉, 李荣华, 王国仁. TCGCL:基于图对比学习的复杂网络流量分类算法[J]. 计算机科学与探索, 2025, 19(5): 1230-1240. |
| [9] | 王宇哲, 颜靖华, 卜凡亮, 王一帆, 李嘉, 韩竹轩. RMFKAN:基于改进图Mamba的网络水军检测方法[J]. 计算机科学与探索, 2025, 19(5): 1365-1378. |
| [10] | 曹璐, 丁苍峰, 马乐荣, 延照耀, 游浩, 洪安琪. 面向图神经网络的节点重要性排序研究进展[J]. 计算机科学与探索, 2025, 19(4): 877-900. |
| [11] | 张雨萌, 张欣, 高谋, 赵虎林. 融合动态卷积和注意力机制的多层感知机语音情感识别[J]. 计算机科学与探索, 2025, 19(4): 1065-1075. |
| [12] | 刘先博, 向澳, 杜彦辉. 融合图文多粒度情感特征的多模态谣言检测方法[J]. 计算机科学与探索, 2025, 19(4): 1021-1035. |
| [13] | 金海波, 冯雨静. 社交知识感知网络推荐算法[J]. 计算机科学与探索, 2025, 19(4): 1105-1114. |
| [14] | 邱云飞, 刘一菲, 于智龙, 金海波. 求解旅行商问题的GCN-Pointransformer模型[J]. 计算机科学与探索, 2025, 19(3): 657-666. |
| [15] | 田继帅, 艾芳菊. 基于增强句法信息与多特征图卷积融合的方面级情感分析[J]. 计算机科学与探索, 2025, 19(3): 738-748. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||