[1] CAO D, WANG Y, DUAN J, et al. Spectral temporal graph neural network for multivariate time-series forecasting[C]//Advances in Neural Information Processing Systems 33, 2020: 17766-17778.
[2] LI S, JIN X, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019: 5243-5253.
[3] 王慧强, 陈楚皓, 吕宏武, 等. 基于双向稀疏Transformer的多变量时序分类模型[J]. 小型微型计算机系统, 2024, 45(3): 555-561.
WANG H Q, CHEN C H, LYU H W, et al. Multivariate time series classification model based on bidirectional sparse transformer[J]. Journal of Chinese Computer Systems, 2024, 45(3): 555-561.
[4] LU J, YAO J, ZHANG J, et al. Soft: softmax-free transformer with linear complexity[C]//Advances in Neural Information Processing Systems 34, 2021: 21297-21309.
[5] ZHOU T, MA Z, WEN Q, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 27268-27286.
[6] ZHANG Y, YAN J. Crossformer: transformer utilizing cross-dimension dependency for multivariate time series forecasting[C]//Proceedings of the 11th International Conference on Learning Representations, 2023.
[7] 秦音, 郭杜杜, 周飞, 等. 零担物流时序预测的SARIMA-GRU-BPNN组合模型及应用[J]. 计算机工程与应用, 2024, 60(19): 297-308.
QIN Y, GUO D D, ZHOU F, et al. Combined SARIMA-GRU-BPNN model for LTL logistics time series prediction and application[J]. Computer Engineering and Applications, 2024, 60(19): 297-308.
[8] 李欢欢, 黄添强, 丁雪梅, 等. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 计算机应用, 2024, 44(7): 2065-2072.
LI H H, HUANG T Q, DING X M, et al. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network[J]. Journal of Computer Applications, 2024, 44(7): 2065-2072.
[9] 屈景怡, 杨柳, 陈旭阳, 等. 基于时空序列的Conv-LSTM航班延误预测模型[J]. 计算机应用, 2022, 42(10): 3275-3282.
QU J Y, YANG L, CHEN X Y, et al. Flight delay prediction model based on Conv-LSTM with spatiotemporal sequence[J]. Journal of Computer Applications, 2022, 42(10): 3275-3282.
[10] 戴宇睿, 安俊秀, 陶全桧. 融合双通路注意力与VT-LSTM的金融时序预测[J]. 计算机工程与应用, 2023, 59(12): 157-165.
DAI Y R, AN J X, TAO Q H. Financial time-series prediction by fusing dual-pathway attention with VT-LSTM[J]. Computer Engineering and Applications, 2023, 59(12): 157-165.
[11] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[12] 梁宏涛, 刘硕, 杜军威, 等. 深度学习应用于时序预测研究综述[J]. 计算机科学与探索, 2023, 17(6): 1285-1300.
LIANG H T, LIU S, DU J W, et al. Review of deep learning applied to time series prediction[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1285-1300.
[13] JIANG S, SYED T, ZHU X, et al. Bridging self-attention and time series decomposition for periodic forecasting[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 3202-3211.
[14] 陈东洋, 毛力. 融合增量学习与Transformer模型的股价预测研究[J]. 计算机科学与探索, 2024, 18(7): 1889-1899.
CHEN D Y, MAO L. Research on stock price prediction integrating incremental learning and transformer model[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1889-1899.
[15] KITAEV N, KAISER L, LEVSKAYA A. Reformer: the efficient transformer[C]//Proceedings of the 8th International Conference on Learning Representations, 2020.
[16] JIANG M W, ZENG P Y, WANG K, et al. FECAM: frequency enhanced channel attention mechanism for time series forecasting[J]. Advanced Engineering Informatics, 2023, 58: 102158.
[17] QUAN J L, ZHAN W F, CHEN Y H, et al. Time series decomposition of remotely sensed land surface temperature and investigation of trends and seasonal variations in surface urban heat islands[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(6): 2638-2657.
[18] SHUMWAY R H, STOFFER D S, STOFFER D S. Time series analysis and its applications[M]. New York: Springer, 2000.
[19] HAMILTON J D. Time series analysis[M]. Princeton: Princeton University Press, 2020.
[20] WU H X, XU J H, WANG J M, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[EB/OL]. [2024-08-19]. https://arxiv.org/abs/2106.13008.
[21] UCI Machine Learning Repository. Electricity load diagrams 2011-2014[EB/OL]. [2024-08-19]. https://doi.org/10.24432/C58C86.
[22] CHOLLET F. Deep learning with Python[M]. 2nd ed. Greenwich: Manning Publications, 2021.
[23] LAI G, CHANG W C, YANG Y, et al. Modeling long-and short-term temporal patterns with deep neural networks[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.New York: ACM, 2018: 95-104.
[24] RIDHO LUBIS A, PRAYUDANI S, AL-KHOWARIZMI. Optimization of MSE accuracy value measurement applying false alarm rate in forecasting on fuzzy time series based on percentage change[C]//Proceedings of the 2020 8th International Conference on Cyber and IT Service Management. Piscataway: IEEE, 2020: 1-5.
[25] SINGH M, DUVAL Q, ALWALA K V, et al. The effectiveness of MAE pre-pretraining for billion-scale pretraining[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 5461-5471.
[26] NIE Y, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with transformers[C]//Proceedings of the 11th International Conference on Learning Representations, 2023.
[27] WU Z H, PAN S R, LONG G D, et al. Connecting the dots: multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 753-763.
[28] WU H, HU T, LIU Y, et al. TimesNet: temporal 2D-variation modeling for general time series analysis[C]//Proceedings of the 11th International Conference on Learning Representations, 2023.
[29] ZENG A L, CHEN M X, ZHANG L, et al. Are transformers effective for time series forecasting?[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(9): 11121-11128.
[30] LAI G K, CHANG W C, YANG Y M, et al. Modeling long- and short-term temporal patterns with deep neural networks[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM, 2018: 95-104. |