[1] LI R F, CHEN H, FENG F X, et al. Dual graph convolutional networks for aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 6319-6329.
[2] TIAN Y H, CHEN G M, SONG Y. Enhancing aspect-level sentiment analysis with word dependencies[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2021: 3726-3739.
[3] 李帅, 徐彬, 韩祎珂, 等. SS-GCN: 情感增强和句法增强的方面级情感分析模型[J]. 计算机科学, 2023, 50(3): 3-11.
LI S, XU B, HAN Y K, et al. SS-GCN: aspect-based sentiment analysis model with affective enhancement and syntactic enhancement[J]. Computer Science, 2023, 50(3): 3-11.
[4] SONG Y W, WANG J H, JIANG T, et al. Attentional encoder network for targeted sentiment classification[EB/OL]. [2023-12-14]. https://arxiv.org/abs/1902.09314.
[5] TANG D, QIN B, FENG X, et al. Effective LSTMs for target dependent sentiment classification[C]//Proceedings of the 26th International Conference on Computational Linguistics. Stroudsburg: ACL, 2016: 3298-3307.
[6] LIU N, SHEN B. Aspect-based sentiment analysis with gated alternate neural network[J]. Knowledge-Based Systems, 2020, 188: 105010.
[7] WANG Y Q, HUANG M L, ZHU X Y, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 606-615.
[8] MA D H, LI S J, ZHANG X D, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017: 4068-4074.
[9] HUANG B X, OU Y L, CARLEY K M. Aspect level sentiment classification with attention-over-attention neural networks[C]//Proceedings of the 11th International Conference on Social, Cultural, and Behavioral Modeling. Cham: Springer, 2018: 197-206.
[10] SUN K, ZHANG R C, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5679-5688.
[11] TIAN Y H, CHEN G M, SONG Y. Aspect-based sentiment analysis with type-aware graph convolutional networks and layer ensemble[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 2910-2922.
[12] WANG K, SHEN W Z, YANG Y Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3229-3238.
[13] MENG F Y, FENG J L, YIN D P, et al. A structure-enhanced graph convolutional network for sentiment analysis[C]// Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: ACL, 2020: 586-595.
[14] ZHANG Z, ZHOU Z L, WANG Y N. SSEGCN: syntactic and semantic enhanced graph convolutional network for aspect-based sentiment analysis[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 4916-4925.
[15] PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543.
[16] 王光, 李鸿宇, 邱云飞, 等. 基于图卷积记忆网络的方面级情感分类[J]. 中文信息学报, 2021, 35(8): 98-106.
WANG G, LI H Y, QIU Y F, et al. Aspect-based sentiment classification via memory graph convolutional network[J]. Journal of Chinese Information Processing, 2021, 35(8): 98-106.
[17] 齐嵩喆. 基于深度学习的方面级情感分析方法研究[D]. 重庆: 重庆理工大学, 2022.
QI S Z. Research on aspect-level emotion analysis method based on deep learning[D]. Chongqing: Chongqing University of Technology, 2022.
[18] 李英, 郭剑毅, 余正涛, 等. 越南语短语树到依存树的转换研究[J]. 计算机科学与探索, 2017, 11(4): 599-607.
LI Y, GUO J Y, YU Z T, et al. Constituent-to-dependency conversion for Vietnamese[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(4): 599-607.
[19] WANG Z G, ZONG C Q. Phrase structure parsing with dependency structure[C]//Proceedings of the 23rd International Conference on Computational Linguistics, 2010: 1292-1300.
[20] 李卫疆, 吴宇宸. 基于句法结构树和混合注意力网络的方面级情感分类[J]. 中文信息学报, 2023, 37(5): 143-156.
LI W J, WU Y C. Aspect level sentiment analysis based on syntactic structure and mixed attention mechanism[J]. Journal of Chinese Information Processing, 2023, 37(5): 143-156.
[21] FAN F F, FENG Y S, ZHAO D Y. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3433-3442.
[22] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2014: 27-35.
[23] DONG L, WEI F R, TAN C Q, et al. Adaptive recursive neural network for target-dependent Twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2014: 49-54.
[24] KINGMA D P, BA J, HAMMAD M M. Adam: a method for stochastic optimization[EB/OL]. [2023-12-14]. https://arxiv.org/abs/1412.6980.
[25] CHEN P, SUN Z Q, BING L D, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 452-461.
[26] ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 4568-4578.
[27] TANG H, JI D H, LI C L, et al. Dependency graph enhanced dual-transformer structure for aspect-based sentiment classification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6578-6588.
[28] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186.
[29] XIAO Z G, WU J R, CHEN Q L, et al. BERT4GCN: using BERT intermediate layers to augment GCN for aspect-based sentiment classification[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 9193-9200.
[30] 杨海洋, 张兴鹏. 融合多通道图卷积网络的方面级情感分析模型[J]. 计算机工程, 2023, 49(11): 61-69.
YANG H Y, ZHANG X P. Aspect-based sentiment analysis model fusing multi-channel graph convolutional network[J]. Computer Engineering, 2023, 49(11): 61-69.
[31] LIANG B, SU H, GUI L, et al. Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks[J]. Knowledge-Based Systems, 2022, 235: 107643.
[32] ZENG Y F, LI Z X, CHEN Z B, et al. Aspect-level sentiment analysis based on semantic heterogeneous graph convolutional network[J]. Frontiers of Computer Science, 2023, 17(6): 176340.
[33] 闫金凤, 邵新慧. 基于图卷积网络的特定方面情感分析[J]. 中文信息学报, 2022, 36(10): 135-144.
YAN J F, SHAO X H. Aspect-level sentiment analysis based on graph convolutional network[J]. Journal of Chinese Information Processing, 2022, 36(10): 135-144.
[34] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. |