[1] 涂波, 刘璐, 刘一会, 等. 一种扩展小孔成像模型的鱼眼相机矫正与标定方法[J]. 自动化学报, 2014, 40(4): 653-659.
TU B, LIU L, LIU Y H, et al. A calibration method for fish-eye cameras based on pinhole model[J]. Acta Automatica Sinica, 2014, 40(4): 653-659.
[2] SUN J, ZHU J. Calibration and correction for omnidirectional image with a fisheye lens[C]//Proceedings of the 2008 4th International Conference on Natural Computation, Jinan, Oct 18-20, 2008: 133-137.
[3] BARMAN A, WU W, LOCE R P, et al. Person re-identification using overhead view fisheye lens cameras[C]//Proceedings of the 2018 IEEE International Symposium on Technologies for Homeland Security, Woburn, Oct 23-24, 2018. Red Hook: Curran Associates, 2018: 1-7.
[4] BERTOZZI M, CASTANGIA L, CATTANI S, et al. 360 detection and tracking algorithm of both pedestrian and vehicle using fisheye images[C]//Proceedings of the 2015 IEEE Intelligent Vehicles Symposium, Seoul, Jun 29-Jul 1,2015. Piscataway: IEEE, 2015: 132-137.
[5] CHIANG S H, WANG T P, CHEN Y F. Efficient pedestrian detection in top-view fisheye images using compositions of perspective view patches[J]. Image and Vision Computing, 2021, 105: 1-8.
[6] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[7] ZHENG Q, SAPONARA S, TIAN X, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659-671.
[8] TAMURA M, HORIGUCHI S, MURAKAMI T. Omnidirectional pedestrian detection by rotation invariant training[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, Waikoloa Village, Jan 7-11, 2019. Piscataway: IEEE, 2019: 1989-1998.
[9] WEI X, WEI Y, LU X. RMDC: rotation-mask deformable convolution for object detection in top-view fisheye cameras[J]. Neurocomputing, 2022, 504: 99-108.
[10] 吴兆东, 徐成, 刘宏哲, 等. 适用于鱼眼图像的改进YOLOv7目标检测算法[J]. 计算机工程与应用, 2024, 60(14): 250-256.
WU Z D, XU C, LIU H Z, et al. Improved YOLOv7 object detection algorithm for fisheye images[J]. Computer Engineering and Applications, 2024, 60(14): 250-256.
[11] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Van-couver, Jun 17-24, 2023. Piscataway: IEEE, 2023: 7464-7475.
[12] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Piscataway: IEEE, 2017: 2117-2125.
[13] GOYAL A, BOCHKOVSKIY A, DENG J, et al. Non-deep networks[C]//Advances in Neural Information Processing Systems 35, New Orleans, Nov 28-Dec 9, 2022: 6789-6801.
[14] HAN K, WANG Y, TIAN Q, et al. Ghost-net: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 1580-1589.
[15] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Piscataway: IEEE, 2017: 1251-1258.
[16] LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. [2024-02-13]. https://arxiv.org/abs/2206.02424.
[17] ZHENG Q, TIAN X, YU Z, et al. MobileRaT: a lightweight radio transformer method for automatic modulation classification in drone communication systems[J]. Drones, 2023, 7(10): 596.
[18] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 7132-7141.
[19] ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3-11.
[20] LLERENA J M, ZENI L F, KRISTEN L N, et al. Gaussian bounding boxes and probabilistic intersection-over-union for object detection[EB/OL]. [2024-02-13]. https://arxiv.org/abs/2106.06072.
[21] ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.
[22] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 12993-13000.
[23] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Con-ference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 658-666.
[24] TEZCAN O, DUAN Z, COKBAS M, et al. WEPDTOF: a dataset and benchmark algorithms for in-the-wild people detection and tracking from overhead fisheye cameras[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 503-512.
[25] LI S, TEZCAN M O, ISHWAR P, et al. Supervised people counting using an overhead fisheye camera[C]//Proceedings of the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance, Taipei, China, Sep 18-21, 2019. Piscataway: IEEE, 2019: 1-8.
[26] DUAN Z, TEZCAN O, NAKAMURA H, et al. RAPiD: rotation-aware people detection in overhead fisheye images[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 636-637.
[27] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL].[2024-02-13]. https://arxiv.org/abs/2004.10934.
[28] 李战. 基于俯视鱼眼图像的密集行人检测算法研究[D].北京: 北方工业大学, 2023.
LI Z. Research on dense pedestrian detection algorithm based on overhead fisheye images[D]. Beijing: North China University of Technology, 2023.
[29] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL].[2024-02-13]. https://arxiv.org/abs/2209.02976.
[30] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018.Cham: Springer, 2018: 3-19.
[31] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 13713-13722.
[32] LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. [2024-02-13]. https://arxiv.org/abs/2112.05561.
[33] LI Y, YAO T, PAN Y, et al. Contextual transformer networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(2): 1489-1500. |