[1] THAKUR S K, SINGH D P, CHOUDHARY J. Lung cancer identification: a review on detection and classification[J]. Cancer and Metastasis Reviews, 2020, 39(3): 989-998.
[2] 王新宇, 赵静文, 刘翔, 等. 融合坐标注意力机制的YOLOv3肺结节检测算法[J]. 电子科技, 2024(6): 1-7.
WANG X Y, ZHAO J W, LIU X, et al. YOLOv3 lung nodule detection based on coordinate attention[J]. Electronic Science and Technology, 2024(6): 1-7.
[3] 赵奎, 仇慧琪, 李旭, 等. 结合注意力和多路径融合的实时肺结节检测算法[J]. 计算机应用, 2024, 44(3): 945-952.
ZHAO K, QIU H Q, LI X, et al. Real-time pulmonary nodule detection algorithm combining attention and multipath fusion[J]. Journal of Computer Applications, 2024, 44(3): 945-952.
[4] 袁金丽, 赵琳琳, 郭志涛, 等. 改进U型残差网络用于肺结节检测[J]. 计算机工程与应用, 2022, 58(13): 195-203.
YUAN J L, ZHAO L L, GUO Z T, et al. Improved U-shaped residual network for lung nodule detection[J]. Computer Engineering and Applications, 2022, 58(13): 195-203.
[5] JI Z L, WU Y, ZENG X Y, et al. Lung nodule detection in medical images based on improved YOLOv5s[J]. IEEE Access, 2023, 11: 76371-76387.
[6] ZHU L, ZHU H, YANG S, et al. Pulmonary nodule detection based on hierarchical-split HRNet and feature pyramid network with atrous convolution[J]. Biomedical Signal Processing and Control, 2023, 85: 105024.
[7] XIONG Y, DENG L, WANG Y. Pulmonary nodule detection based on model fusion and adaptive false positive reduction[J]. Expert Systems with Applications, 2024, 238: 121890.
[8] HUSSAIN M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677.
[9] WANG A, CHEN H, LIN Z, et al. RepViT: revisiting mobile CNN from ViT perspective[EB/OL]. [2024-04-24]. https://arxiv.org/abs/2307.09283.
[10] CAI X, LAI Q, WANG Y, et al. Poly kernel inception network for remote sensing detection[EB/OL]. [2024-04-24]. https://arxiv.org/abs/2403.06258.
[11] CHEN Y F, ZHANG C Y, CHEN B, et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J]. Computers in Biology and Medicine, 2024, 170: 107917.
[12] XU W, WAN Y. ELA: efficient local attention for deep convolutional neural networks[EB/OL]. [2024-04-24]. https://arxiv.org/abs/2403.01123.
[13] LIU W, LU H, FU H, et al. Learning to upsample by learning to sample[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6027-6037.
[14] LIU Z, WANG Y, VAIDYA S, et al. KAN: Kolmogorov-Arnold networks[EB/OL]. [2024-05-16]. https://arxiv.org/abs/2404.19756.
[15] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[16] ZHANG H, XU C, ZHANG S. Inner-IOU: more effective intersection over union loss with auxiliary bounding box[EB/OL]. [2024-04-24]. https://arxiv.org/abs/2311.02877.
[17] SETIO A A A, TRAVERSO A, DE BEL T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge[J]. Medical Image Analysis, 2017, 42: 1-13.
[18] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[19] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[20] TERVEN J, CORDOVA-ESPARZA D. A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO-NAS[EB/OL]. [2024-04-24]. https://arxiv.org/abs/2304.00501.
[21] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2024-04-24]. https://arxiv.org/abs/2209.02976.
[22] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[23] WANG C C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[EB/OL]. [2024-04-24]. https://arxiv.org/abs/2309.11331.
[24] CHEN Y M, YUAN X B, WU R Q, et al. YOLO-MS: rethinking multi-scale representation learning for real-time object detection[EB/OL]. [2024-04-24]. https://arxiv.org/abs/2308. 05480.
[25] TANG Y, HAN K, GUO J, et al. GhostNetv2: enhance cheap operation with long-range attention[C]//Advances in Neural Information Processing Systems 35, New Orleans, Nov 28-Dec 9, 2022: 9969-9982.
[26] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
[27] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programable gradient information[EB/OL]. [2024-04-24]. https://arxiv.org/abs/2402.13616. |