[1] JIANG M Y, JING C, CHEN L M, et al. An application study on multimodal fake news detection based on Albert-ResNet50 model[J]. Multimedia Tools and Applications, 2024, 83(3): 8689-8706.
[2] 殷飞, 张鹏, 兰月新, 等. 基于系统动力学的突发事件网络谣言治理研究[J]. 情报科学, 2018, 36(4): 57-63.
YIN F, ZHANG P, LAN Y X, et al. Research on Internet rumors about emergencies based on the system dynamics model[J]. Information Science, 2018, 36(4): 57-63.
[3] 冯茹嘉. 基于情感分析和Transformer模型的早期微博谣言检测[D]. 乌鲁木齐: 新疆师范大学, 2021.
FENG R J. Early weibo rumor detection based on sentiment analysis and transformer model[D]. Urumqi: Xinjiang Normal University, 2021.
[4] 吴立志, 周雨薇. 基于新冠肺炎疫情的网络谣言法治化治理困境与出路[J]. 昆明理工大学学报(社会科学版), 2023, 23(2): 1-8.
WU L Z, ZHOU Y W. Dilemma of the law-based governance in the disposal of online rumors concerning the COVID-19 epidemic and its solutions[J]. Journal of Kunming University of Science and Technology (Social Sciences), 2023, 23(2): 1-8.
[5] 钱美玲, 张元. 国内网络政治谣言研究: 现状与展望[J]. 华北水利水电大学学报(社会科学版), 2023, 39(5): 64-70.
QIAN M L, ZHANG Y. Research on online political rumors in China: current situation and prospecting[J]. Journal of North China University of Water Resources and Electric Power (Social Science Edition), 2023, 39(5): 64-70.
[6] 谢新洲, 陈春彦. 网络政治谣言消解策略[J]. 人民论坛, 2015(34): 57-59.
XIE X Z, CHEN C Y. Strategies for dispelling network political rumors[J]. People’s Tribune, 2015(34): 57-59.
[7] MA J, GAO W, WONG K F. Rumor detection on Twitter with tree-structured recursive neural networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 1980-1989.
[8] MA J, GAO W, WEI Z Y, et al. Detect rumors using time series of social context information on microblogging websites[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York: ACM, 2015: 1751-1754.
[9] DOU Y T, LIU Z W, SUN L, et al. Enhancing graph neural network-based fraud detectors against camouflaged fraudsters[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 315-324.
[10] WANG Y Z, QIAN S S, HU J, et al. Fake news detection via knowledge-driven multimodal graph convolutional networks[C]//Proceedings of the 2020 International Conference on Multimedia Retrieval. New York: ACM, 2020: 540-547.
[11] HU L M, YANG T C, ZHANG L H, et al. Compare to the knowledge: graph neural fake news detection with external knowledge[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 754-763.
[12] WU Y, ZHAN P W, ZHANG Y J, et al. Multimodal fusion with co-attention networks for fake news detection[C]//Find-ings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 2560-2569.
[13] PENG L W, JIAN S L, LI D S, et al. MRML: multimodal rumor detection by deep metric learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5.
[14] JIN Z W, CAO J, GUO H, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C]//Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM, 2017: 795-816.
[15] SINGHAL S, SHAH R R, CHAKRABORTY T, et al. SpotFake: a multi-modal framework for fake news detection[C]//Proceedings of the 2019 IEEE 5th International Conference on Multimedia Big Data. Piscataway: IEEE, 2019: 39-47.
[16] WANG Y Q, MA F L, JIN Z W, et al. EANN[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 849-857.
[17] KHATTAR D, GOUD J S, GUPTA M, et al. MVAE: multimodal variational autoencoder for fake news detection[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2915-2921.
[18] ZHOU X Y, WU J D, ZAFARANI R. SAFE: similarity-aware multi-modal fake news detection[C]//Advances in Knowledge Discovery and Data Mining: 24th Pacific-Asia Conference. Cham: Springer, 2020: 354-367.
[19] CHEN Y X, LI D S, ZHANG P, et al. Cross-modal ambiguity learning for multimodal fake news detection[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2897-2905.
[20] SONG C G, NING N W, ZHANG Y L, et al. A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks[J]. Information Processing & Management, 2021, 58(1): 102437.
[21] 王震宇, 朱学芳. 基于多模态Transformer的虚假新闻检测研究[J]. 情报学报, 2023, 42(12): 1477-1486.
WANG Z Y, ZHU X F. Research on fake news detection based on multimodal transformer[J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(12): 1477-1486.
[22] 段钰潇, 胡艳丽, 郭浩, 等. 改进的跨模态关联歧义学习的虚假信息检测方法研究[J]. 计算机科学, 2024, 51(4): 307-313.
DUAN Y X, HU Y L, GUO H, et al. Study on improved fake information detection method based on cross-modal correlation ambiguity learning[J]. Computer Science, 2024, 51(4): 307-313.
[23] YOU Q Z, LUO J B, JIN H L, et al. Robust image sentiment analysis using progressively trained and domain transferred deep networks[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2015: 381-388.
[24] PR?LLOCHS N, B?R D, FEUERRIEGEL S. Emotions explain differences in the diffusion of true vs. false social media rumors[J]. Scientific Reports, 2021, 11(1): 22721.
[25] HORNER C G, GALLETTA D, CRAWFORD J, et al. Emotions: the unexplored fuel of fake news on social media[J]. Journal of Management Information Systems, 2021, 38(4): 1039-1066.
[26] ZHANG X Y, CAO J, LI X R, et al. Mining dual emotion for fake news detection[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 3465-3476.
[27] HAMED S K, AB AZIZ M J, YAAKUB M R. Fake news detection model on social media by leveraging sentiment analysis of news content and emotion analysis of users’ comments[J]. Sensors, 2023, 23(4): 1748.
[28] HAQUE A, ABULAISH M. An emotion-enriched and psycholinguistics features-based approach for rumor detection on online social media[C]//Proceedings of the 11th International Workshop on Natural Language Processing for Social Media. Stroudsburg: ACL, 2023: 28-37.
[29] XU Y, LI X, WANG H, et al. An early detection model for social media rumors considering users’ emotional characteristics[EB/OL]. [2024-03-20]. https://europepmc.org/article/PPR/PPR719911.
[30] LUVEMBE A M, LI W M, LI S H, et al. Dual emotion based fake news detection: a deep attention-weight update approach[J]. Information Processing & Management, 2023, 60(4): 103354.
[31] 刘华玲, 陈尚辉, 曹世杰, 等. 基于多模态学习的虚假新闻检测研究[J]. 计算机科学与探索, 2023, 17(9): 2015-2029.
LIU H L, CHEN S H, CAO S J, et al. Survey of fake news detection with multi-model learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2015-2029.
[32] WANG G, TAN L, SHANG Z L, et al. Multimodal dual emotion with fusion of visual sentiment for rumor detection[J]. Multimedia Tools and Applications, 2024, 83(10): 29805-29826.
[33] 胡慧君, 丁子毅, 张耀峰, 等. 基于联合交互注意力的图文情感分析方法[J/OL]. 北京航空航天大学学报 [2024-04-24]. https://doi.org/10.13700/j.bh.1001-5965.2023.0365.
HU H J, DING Z Y, ZHANG Y F, et al. Image-text sentiment analysis in social media based on joint and interactive attention[J/OL]. Journal of Beijing University of Aeronautics and Astronautics [2024-04-24]. https://doi.org/10.13700/j.bh.1001-5965.2023.0365.
[34] 孟甜甜, 韩虎, 吴渊航. 面向方面抽取与情感分类的多任务联合建模[J]. 计算机科学与探索, 2023, 17(7): 1669-1679.
MENG T T, HAN H, WU Y H. Joint modeling based on multi-task learning for aspect term extraction and sentiment classification[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1669-1679.
[35] 余本功, 邢钰, 张书文. 多模态协同对比学习的方面级情感分析模型[J]. 数据分析与知识发现, 2024, 8(11): 22-32.
YU B G, XING Y, ZHANG S W. Aspect-based sentiment analysis model of multimodal collaborative contrastive learning[J]. Data Analysis and Knowledge Discovery, 2024, 8(11): 22-32.
[36] KENTON J D M W C, TOUTANOVA L K. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019 : 4171-4186.
[37] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-04-24]. https://arxiv.org/abs/1409.1556.
[38] MOHAMMAD S M, TURNEY P D. Crowdsourcing a word-emotion association lexicon[J]. Computational Intelligence, 2013, 29(3): 436-465.
[39] 徐琳宏, 林鸿飞, 潘宇, 等. 情感词汇本体的构造[J]. 情报学报, 2008, 27(2): 180-185.
XU L H, LIN H F, PAN Y, et al. Constructing the affective lexicon ontology[J]. Journal of the China Society for Scientific and Technical Information, 2008, 27(2): 180-185.
[40] MOHAMMAD S M. Word affect intensities[EB/OL]. [2024-03-20]. https://arxiv.org/abs/1704.08798.
[41] DONG Z D, DONG Q. HowNet - a hybrid language and knowledge resource[C]//Proceedings of the 2003 International Conference on Natural Language Processing and Knowledge Engineering. Piscataway: IEEE, 2003: 820-824.
[42] BIRD S, KLEIN E, LOPER E. Natural language processing with Python: analyzing text with the natural language toolkit[M]. Beijing: O’Reilly Media, Inc., 2009.
[43] BALTRUSAITIS T, ZADEH A, LIM Y C, et al. OpenFace 2.0: facial behavior analysis toolkit[C]//Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition. Piscataway: IEEE, 2018: 59-66.
[44] LU J S, YANG J W, BATRA D, et al. Hierarchical question-image co-attention for visual question answering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 289-297.
[45] BOIDIDOU C, ANDREADOU K, PAPADOPOULOS S, et al. Verifying multimedia use at MediaEval 2015[C]//Proceedings of the MediaEval 2015 Workshop, 2015.
[46] ZENG A H, LIU X, DU Z X, et al. GLM-130B: an open bilingual pre-trained model[EB/OL]. [2024-03-20]. https://arxiv.org/abs/2210.02414.
[47] SHANAHAN M, MCDONELL K, REYNOLDS L. Role play with large language models[J]. Nature, 2023, 623(7987): 493-498.
[48] 地力夏提·阿布都热依木, 马博, 杨雅婷, 等. 基于注意力机制多特征融合的虚假信息检测[J]. 厦门大学学报(自然科学版), 2022, 61(4): 608-616.
DILIXIATI ABUDUREYIMU, MA B,YANG Y T, et al. Attention based multi-feature fusion neural network for fake news detection[J]. Journal of Xiamen University (Natural Science), 2022, 61(4): 608-616. |