[1] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2024-01-15]. https://arxiv.org/abs/1810.04805.
[2] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751.
[3] LIU P F, QIU X P, HUANG X J, et al. Recurrent neural network for text classification with multi-task learning[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2016: 2873-2879.
[4] SONG Y, SHI S M, LI J, et al. Directional skip-gram: explicitly distinguishing left and right context for word embeddings[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2. Stroudsburg: ACL, 2018: 175-180.
[5] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[6] ZHENG Y, LIU T, WANG Y L, et al. Diagnosing New York city??s noises with ubiquitous data[C]//Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York: ACM, 2014: 715-725.
[7] 彭晓, 梁艳, 许立言, 等. 基于“12345”市民服务热线的城市公共管理问题挖掘与治理优化途径[J]. 北京大学学报(自然科学版), 2020, 56(4): 721-731.
PENG X, LIANG Y, XU L Y, et al. An approach for discovering urban public management problem and optimizing urban governance based on “12345” citizen service hotline[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(4): 721-731.
[8] PU X R, LONG K, CHEN K C, et al. A semantic-based short-text fast clustering method on hotline records in Chengdu[C]//Proceedings of the 2019 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress. Piscataway: IEEE, 2019: 516-521.
[9] SI Y T, XU L Y, PENG X, et al. Comparative diagnosis of the urban noise problem from infrastructural and social sensing approaches: a case study in Ningbo, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(5): 2809.
[10] 陈钢. 融合RoBERTa和特征提取的政务热线工单分类[J]. 计算机与现代化, 2022(6): 21-26.
CHEN G. Government hotline work-order classification fusing RoBERTa and feature extraction[J]. Computer and Modernization, 2022(6): 21-26.
[11] LUO J Y, QIU Z, XIE G Q, et al. Research on civic hotline complaint text classification model based on word2vec[C]//Proceedings of the 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. Piscataway: IEEE, 2018: 180-1803.
[12] PENG X, LI Y H, SI Y T, et al. A social sensing approach for everyday urban problem-handling with the 12345-complaint hotline data[J]. Computers, Environment and Urban Systems, 2022, 94: 101790.
[13] MINAEE S, KALCHBRENNER N, CAMBRIA E, et al. Deep learning: based text classification: a comprehensive review[J]. ACM Computing Surveys, 2021, 54(3): 1-40.
[14] CHEN T Q, GUESTRIN C, CHEN T Q, et al. XGBoost[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794.
[15] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[C]//Proceedings of the 1st International Conference on Learning Representations, 2013.
[16] JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2017: 562-570.
[17] LAI S W, XU L H, LIU K, et al. Recurrent convolutional neural networks for text classification[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2015: 2267-2273.
[18] WANG S Y, HUANG M L, DENG Z D, et al. Densely connected CNN with multi-scale feature attention for text classification[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2018: 4468-4474.
[19] WANG G Y, LI C Y, WANG W L, et al. Joint embedding of words and labels for text classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 2321-2331.
[20] XIAO L Q, ZHANG H L, CHEN W Q, et al. Transformable convolutional neural network for text classification[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2018: 4496-4502.
[21] LI P F, ZHONG P X, MAO K Z, et al. ACT: an attentive convolutional transformer for efficient text classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(15): 13261-13269.
[22] JIANG T, WANG D Q, SUN L L, et al. LightXML: transformer with dynamic negative sampling for high-performance extreme multi-label text classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(9): 7987-7994.
[23] GASPARETTO A, MARCUZZO M, ZANGARI A, et al. A survey on text classification algorithms: from text to predictions[J]. Information, 2022, 13(2): 83.
[24] ATANASOVA P. A diagnostic study of explainability techniques for text classification[M]//Accountable and explainable methods for complex reasoning over text. Cham: Springer, 2020: 155-187.
[25] LI Q, PENG H, LI J X, et al. A survey on text classification: from traditional to deep learning[J]. ACM Transactions on Intelligent Systems and Technology, 2022, 13(2): 1-41.
[26] WANG X, BO D Y, SHI C, et al. A survey on heterogeneous graph embedding: methods, techniques, applications and sources[J]. IEEE Transactions on Big Data, 2023, 9(2): 415-436.
[27] KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL]. [2025-02-12].?https://arxiv.org/abs/1611.07308.
[28] JIANG W W, LUO J Y. Graph neural network for traffic forecasting: a survey[J]. Expert Systems with Applications, 2022, 207: 117921.
[29] SU X, XUE S, LIU F Z, et al. A comprehensive survey on community detection with deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 4682-4702.
[30] ASRATIAN A S, DENLEY T M J, H?GGKVIST R. Bipartite graphs and their applications[M]. Cambridge: Cambridge University Press, 1998.
[31] WU Z H, JAIN P, WRIGHT M A, et al. Representing long-range context for graph neural networks with global attention[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 13266-13279.
[32] QIU J Z, CHEN Q B, DONG Y X, et al. GCC[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1150-1160.
[33] LI Z, SHEN X, JIAO Y H, et al. Hierarchical bipartite graph neural networks: towards large-scale E-commerce applications[C]//Proceedings of the 2020 IEEE 36th International Conference on Data Engineering. Piscataway: IEEE, 2020: 1677-1688.
[34] LI C, JIA K Y, SHEN D, et al. Hierarchical representation learning for bipartite graphs[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2019: 2873-2879.
[35] WU S W, SUN F, ZHANG W T, et al. Graph neural networks in recommender systems: a survey[J]. ACM Computing Surveys, 2022, 55(5): 1-37.
[36] YANG Z C, YANG D Y, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2016: 1480-1489.
[37] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[38] 承孝敏, 陈钢, 陈健鹏, 等. RAVA: 基于强化关联的12345热线事件分拨方法[J]. 中文信息学报, 2022, 36(10): 155-166.
CHENG X M, CHEN G, CHEN J P, et al. RAVA: an reinforced-association-based method for 12345 hotline events allocation[J]. Journal of Chinese Information Processing, 2022, 36(10): 155-166. |