[1] BASU S. Machine learning and visualizations for time-series healthcare data[C]//Proceedings of the 2023 IEEE 11th International Conference on Healthcare Informatics. Piscataway: IEEE, 2023: 485.
[2] HUSáK M, KOMáRKOVá J, BOU-HARB E, et al. Survey of attack projection, prediction, and forecasting in cyber security[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 640-660.
[3] PALIT A K, POPOVIC D. Computational intelligence in time series forecasting: theory and engineering applications[M]. London: Springer, 2005.
[4] SEZER O B, GUDELEK M U, OZBAYOGLU A M. Financial time series forecasting with deep learning: a systematic literature review: 2005—2019[J]. Applied Soft Computing, 2020, 90: 106181.
[5] BLáZQUEZ-GARCíA A, CONDE A, MORI U, et al. A review on outlier/anomaly detection in time series data[J]. ACM Computing Surveys, 2021, 54(3): 1-33.
[6] HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 387-395.
[7] CHEN Z K, CHEN D S, ZHANG X, et al. Learning graph structures with transformer for multivariate time-series anomaly detection in IoT[J]. IEEE Internet of Things Journal, 2022, 9(12): 9179-9189.
[8] BRAUCKHOFF D, SALAMATIAN K, MAY M. Applying PCA for traffic anomaly detection: problems and solutions[C]//Proceedings of the IEEE INFOCOM 2009. Piscataway: IEEE, 2009: 2866-2870.
[9] HUANG T, ZHU Y, ZHANG Q N, et al. An LOF-based adaptive anomaly detection scheme for cloud computing[C]//Proceedings of the 2013 IEEE 37th Annual Computer Software and Applications Conference Workshops. Piscataway: IEEE, 2013: 206-211.
[10] MENG J L, SHANG H K, BIAN L. The application on intrusion detection based on K-means cluster algorithm[C]//Proceedings of the 2009 International Forum on Information Technology and Applications. Piscataway: IEEE, 2009: 150- 152.
[11] MA J, PERKINS S. Time-series novelty detection using one-class support vector machines[C]//Proceedings of the 2003 International Joint Conference on Neural Networks. Piscataway: IEEE, 2003: 1741-1745.
[12] PANG G S, SHEN C H, CAO L B, et al. Deep learning for anomaly detection: a review[J]. ACM Computing Surveys, 2021, 54(2): 1-38.
[13] MUNIR M, SIDDIQUI S A, DENGEL A, et al. DeepAnT: a deep learning approach for unsupervised anomaly detection in time series[J]. IEEE Access, 2018, 7: 1991-2005.
[14] SU Y, ZHAO Y J, NIU C H, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 2828-2837.
[15] LI D, CHEN D C, JIN B H, et al. MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks[C]//Proceedings of the 28th International Conference on Artificial Neural Networks. Cham: Springer, 2019: 703-716.
[16] TULI S, CASALE G, JENNINGS N R. TranAD: deep transformer networks for anomaly detection in multivariate time series data[J]. Proceedings of the VLDB Endowment, 2022, 15(6): 1201-1214.
[17] DENG A L, HOOI B. Graph neural network-based anomaly detection in multivariate time series[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4027-4035.
[18] BAI Y F, WANG J, ZHANG X E, et al. CrossFuN: multiview joint cross-fusion network for time-series anomaly detection[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-9.
[19] ZHAO H, WANG Y J, DUAN J Y, et al. Multivariate time-series anomaly detection via graph attention network[C]//Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 841-850.
[20] MATHUR A P, TIPPENHAUER N O. SWaT: a water treatment testbed for research and training on ICS security[C]//Proceedings of the 2016 International Workshop on Cyber-physical Systems for Smart Water Networks. Piscataway: IEEE, 2016: 31-36.
[21] AHMED C M, PALLETI V R, MATHUR A P. WADI: a water distribution testbed for research in the design of secure cyber physical systems[C]//Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks. New York: ACM, 2017: 25-28.
[22] O’NEILL P, ENTEKHABI D, NJOKU E, et al. The NASA soil moisture active passive (SMAP) mission: overview[C]//Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2010: 3236-3239.
[23] SENGUPTA A, STELTZNER A, WITKOWSKI A, et al. An overview of the Mars science laboratory parachute decelerator system[C]//Proceedings of the 2007 IEEE Aerospace Conference. Piscataway: IEEE, 2007: 1-8.
[24] ZONG B, SONG Q, MIN M R, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[C]//Proceedings of the 6th International Conference on Learning Representations, 2018.
[25] LAI G K, CHANG W C, YANG Y M, et al. Modeling long- and short-term temporal patterns with deep neural networks[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM, 2018: 95-104.
[26] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[27] PARK D, HOSHI Y, KEMP C C. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1544-1551.
[28] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2024-02-20]. https://arxiv.org/abs/1412.3555.
[29] AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 3395-3404.
[30] REN H S, XU B X, WANG Y J, et al. Time-series anomaly detection service at microsoft[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 3009-3017.
[31] ZHANG C L, ZHOU T, WEN Q S, et al. TFAD: a decomposition time series anomaly detection architecture with time-frequency analysis[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 2497-2507.
[32] WANG J, SHAO S K, BAI Y F, et al. Multiscale wavelet graph autoencoder for multivariate time-series anomaly detection[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 72: 2502911.
[33] JIN M, KOH H Y, WEN Q S, et al. A survey on graph neural networks for time series: forecasting, classification, imputation, and anomaly detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10466-10485.
[34] HO T K K, KARAMI A, ARMANFARD N. Graph-based time-series anomaly detection: a survey[EB/OL]. [2024-02-20]. https://arxiv.org/abs/2302.00058.
[35] DING C Y, SUN S L, ZHAO J. MST-GAT: a multimodal spatial-temporal graph attention network for time series anomaly detection[J]. Information Fusion, 2023, 89: 527-536.
[36] ANGIULLI F, PIZZUTI C. Fast outlier detection in high dimensional spaces[C]//Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery. Berlin, Heidelberg: Springer, 2002: 15-27.
[37] AGGARWAL C C. An introduction to outlier analysis[M]//Outlier analysis. Cham: Springer, 2017: 1-33.
[38] CHEN K, FENG M, WIRJANTO T S. Multivariate time series anomaly detection via dynamic graph forecasting[EB/OL]. [2024-02-20]. https://arxiv.org/abs/2302.02051.
[39] ZHANG W Q, ZHANG C, TSUNG F. GRELEN: multivariate time series anomaly detection from the perspective of graph relational learning[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2022: 2390-2397. |