[1] 温雯, 邓峰颖, 郝志峰, 等. 时空邻域感知的时序兴趣点推荐[J]. 计算机科学与探索, 2024, 18(7): 1865-1878.
WEN W, DENG F Y, HAO Z F, et al. Recommendation method for time-sequence point of interest via spatio-temporal vicinity perception[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1865-1878.
[2] WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174.
[3] 王永贵, 刘丹妮. 融合多个性化桥和自监督学习的跨域推荐算法[J]. 计算机科学与探索, 2024, 18(7): 1792-1805.
WANG Y G, LIU D N. Cross-domain recommendation algorithm combining multi-personalized bridges and self-supervised learning[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1792-1805.
[4] 刘源, 董永权, 陈成, 等. 融合热点与长短期兴趣的图神经网络课程推荐模型[J]. 计算机科学与探索, 2024, 18(6): 1600-1612.
LIU Y, DONG Y Q, CHEN C, et al. Graph neural network integrating hot spots and long and short-term interests for course recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1600-1612.
[5] WANG X, WANG D X, XU C R, et al. Explainable reasoning over knowledge graphs for recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 5329-5336.
[6] WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019:950-958.
[7] CAO Y X, WANG X, HE X N, et al. Unifying knowledge graph learning and recommendation: towards a better under-standing of user preferences[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 151-161.
[8] XIN X, HE X N, ZHANG Y F, et al. Relational collaborative filtering: modeling multiple item relations for recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 125-134.
[9] CHEN C, ZHANG M, MA W Z, et al. Jointly non-sampling learning for knowledge graph enhanced recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 189-198.
[10] WANG P F, FAN Y, XIA L, et al. KERL: a knowledge-guided reinforcement learning model for sequential recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 209-218.
[11] MENG W J, YANG D Q, XIAO Y H. Incorporating user micro-behaviors and item knowledge into multi-task learning for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1091-1100.
[12] WANG C Y, ZHANG M, MA W Z, et al. Make it a chorus: knowledge- and time-aware item modeling for sequential recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 109-118.
[13] YU X, REN X, SUN Y Z, et al. Personalized entity recommendation: a heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 283-292.
[14] SHI C, LIU J, ZHUANG F Z, et al. Integrating heterogeneous information via flexible regularization framework for recommendation[J]. Knowledge and Information Systems, 2016, 49(3): 835-859.
[15] SHI C, HU B B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Tran-sactions on Knowledge and Data Engineering, 2019, 31(2): 357-370.
[16] FU T Y, LEE W C, LEI Z. HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM, 2017: 1797-1806.
[17] WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2022-2032.
[18] LU Y F, FANG Y, SHI C. Meta-learning on heterogeneous information networks for cold-start recommendation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1563-1573.
[19] SUN Z, YANG J, ZHANG J, et al. Recurrent knowledge graph embedding for effective recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018: 297-305.
[20] ZHAO K Z, WANG X T, ZHANG Y R, et al. Leveraging demonstrations for reinforcement recommendation reasoning over knowledge graphs[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 239-248.
[21] WANG X, XU Y K, HE X N, et al. Reinforced negative sampling over knowledge graph for recommendation[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 99-109.
[22] WANG H W, ZHANG F Z, ZHANG M D, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 968-977.
[23] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1025-1035.
[24] CHEN X C, HUANG C R, YAO L N, et al. Knowledge-guided deep reinforcement learning for interactive recommendation[C]//Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-8.
[25] ZHOU S J, DAI X Y, CHEN H K, et al. Interactive recommender system via knowledge graph-enhanced reinforcement learning[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 179-188.
[26] JIN J R, QIN J R, FANG Y C, et al. An efficient neighborhood-based interaction model for recommendation on heterogeneous graph[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 75-84.
[27] CHEN Y K, YANG Y M, WANG Y J, et al. Attentive knowledge-aware graph convolutional networks with collaborative guidance for personalized recommendation[C]//Proceedings of the 2022 IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 299-311.
[28] ZHOU R, HANSEN E A. Breadth-first heuristic search[J]. Artificial Intelligence, 2006, 170(4/5): 385-408.
[29] TARJAN R. Depth-first search and linear graph algorithms[C]//Proceedings of the 12th Annual Symposium on Switching and Automata Theory. Piscataway: IEEE, 1971: 114-121.
[30] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710.
[31] HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 173-182.
[32] KINGMA D, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations, 2015.
[33] WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426.
[34] HU B B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-N recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1531-1540.
[35] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington: AUAI Press, 2009: 452-461.
[36] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648.
[37] ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362.
[38] ZHAO H, YAO Q, LI J, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 635-644. |