[1] GARG T, KAUR G. A systematic review on intelligent transport systems[J]. Journal of Computational and Cognitive Engineering, 2023, 2(3): 175-188.
[2] JAVED A R, AHMED W, PANDYA S, et al. A survey of explainable artificial intelligence for smart cities[J]. Electronics, 2023, 12(4): 1020.
[3] HUO G Y, ZHANG Y, WANG B Y, et al. Hierarchical spatio- temporal graph convolutional networks and transformer network for traffic flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 3855-3867.
[4] NIGAM N, SINGH D P, CHOUDHARY J. A review of different components of the intelligent traffic management system (ITMS)[J]. Symmetry, 2023, 15(3): 583.
[5] SATTARZADEH A R, KUTADINATA R J, PATHIRANA P N, et al. A novel hybrid deep learning model with ARIMA Conv-LSTM networks and shuffle attention layer for short-term traffic flow prediction[J]. Transportmetrica A: Transport Science, 2025, 21(1).
[6] XU X C, JIN X F, XIAO D Q, et al. A hybrid autoregressive fractionally integrated moving average and nonlinear autoregressive neural network model for short-term traffic flow prediction[J]. Journal of Intelligent Transportation Systems, 2023, 27(1): 1-18.
[7] DAI G N, KONG W Y, LIU Y B, et al. Multi-perspective convolutional neural networks for citywide crowd flow prediction[J]. Applied Intelligence, 2023, 53(8): 8994-9008.
[8] MO J Q, GONG Z G, CHEN J Y. Attentive differential convolutional neural networks for crowd flow prediction[J]. Knowledge-Based Systems, 2022, 258: 110006.
[9] KHAN A, FOUDA M M, DO D T, et al. Short-term traffic prediction using deep learning long short-term memory: taxonomy, applications, challenges, and future trends[J]. IEEE Access, 2023, 11: 94371-94391.
[10] ZHU J J, JIANG Q S, SHEN Y H, et al. Application of recurrent neural network to mechanical fault diagnosis: a review[J]. Journal of Mechanical Science and Technology, 2022, 36(2): 527-542.
[11] JIANG W W, LUO J Y, HE M, et al. Graph neural network for traffic forecasting: the research progress[J]. ISPRS International Journal of Geo-Information, 2023, 12(3): 100.
[12] JIN G Y, LIANG Y X, FANG Y C, et al. Spatio-temporal graph neural networks for predictive learning in urban computing: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(10): 5388-5408.
[13] YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018: 3634-3640.
[14] LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[EB/OL]. [2024-10-23]. https://arxiv.org/abs/1707.01926.
[15] ZHENG C P, FAN X L, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 1234-1241.
[16] JIANG J W, HAN C K, ZHAO W X, et al. PDFormer: propagation delay-aware dynamic long-range transformer for traffic flow prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(4): 4365-4373.
[17] WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672.
[18] ZIVOT E, WANG J. Vector autoregressive models for multi-variate time series[M]//Modeling financial time series with S-PLUS?. New York: Springer, 2006: 385-429.
[19] XU H B, JIANG C S. Deep belief network-based support vector regression method for traffic flow forecasting[J]. Neural Computing and Applications, 2020, 32(7): 2027-2036.
[20] LIN G C, LIN A J, GU D L. Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient[J]. Information Sciences, 2022, 608: 517-531.
[21] TEDJOPURNOMO D A, BAO Z F, ZHENG B H, et al. A survey on modern deep neural network for traffic prediction: trends, methods and challenges (extended abstract)[C]//Proceedings of the 2023 IEEE 39th International Conference on Data Engineering. Piscataway: IEEE, 2023: 3795- 3796.
[22] SAYED S A, ABDEL-HAMID Y, HEFNY H A. Artificial intelligence-based traffic flow prediction: a comprehensive review[J]. Journal of Electrical Systems and Information Technology, 2023, 10(1): 13.
[23] AL SAHILI Z, AWAD M. Spatio-temporal graph neural networks: a survey[EB/OL]. [2024-10-23]. https://arxiv.org/abs/ 2301.10569.
[24] JIN M, KOH H Y, WEN Q S, et al. A survey on graph neural networks for time series: forecasting, classification, imputation, and anomaly detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10466-10485.
[25] WU Z H, PAN S R, LONG G D, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2019: 1907-1913.
[26] BAI L, YAO L N, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[C]//Advances in Neural Information Processing Systems 33, 2020: 17804-17815.
[27] WU Z H, PAN S R, LONG G D, et al. Connecting the Dots: multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 753-763.
[28] LI F X, FENG J, YAN H, et al. Dynamic graph convolutional recurrent network for traffic prediction: benchmark and solution[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(1): 1-21.
[29] KONG W Y, GUO Z Y, LIU Y B. Spatio-temporal pivotal graph neural networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(8): 8627-8635.
[30] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[31] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understan-ding[EB/OL]. [2024-10-23]. https://arxiv.org/abs/1810.04805.
[32] GUO S N, LIN Y F, WAN H Y, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(11): 5415-5428.
[33] XU M X, DAI W R, LIU C M, et al. Spatial-temporal transformer networks for traffic flow forecasting[EB/OL]. [2024-10-23]. https://arxiv.org/abs/2001.02908.
[34] SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 914-921. |