[1] NIGAM K, MCCALLUM A K, THRUN S, et al. Text classification from labeled and unlabeled documents using EM[J]. Machine Learning, 2000, 39(2): 103-134.
[2] MCCALLUM A K. Multi-label text classification with a mixture model trained by EM[C]//Proceedings of the 1999 Workshop on Text Learning. Palo Alto: AAAI Press, 1999.
[3] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. New York: ACM, 2001: 285-295.
[4] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
[5] PANG B, LEE L. A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts[C]//Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. Stroudsburg: ACL, 2004: 271-278.
[6] MOHAMMAD S, SALAMEH M, KIRITCHENKO S. Sentiment lexicons for Arabic social media[C]//Proceedings of the 10th International Conference on Language Resources and Evaluation, 2016: 33-37.
[7] XU P Y, XIAO L, LIU B, et al. Label-specific feature augmentation for long-tailed multi-label text classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(9): 10602-10610.
[8] BI W, KWOK J T, BI W, et al. Multilabel classification with label correlations and missing labels[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2014: 1680-1686.
[9] CHUNG J, KASTNER K, DINH L, et al. A recurrent latent variable model for sequential data[C]//Advances in Neural Information Processing Systems 28, Montreal, Dec 7-12, 2015: 2980-2988.
[10] 徐鹏宇, 刘华锋, 刘冰, 等. 标签推荐方法研究综述[J]. 软件学报, 2022, 33(4): 1244-1266.
XU P Y, LIU H F, LIU B, et al. Survey of tag recommendation methods[J]. Journal of Software, 2022, 33(4): 1244-1266.
[11] WU B Y, LIU Z L, WANG S F, et al. Multi-label learning with missing labels[C]//Proceedings of the 2014 22nd International Conference on Pattern Recognition. Piscataway: IEEE, 2014: 1964-1968.
[12] CHEN Y N, LIN H T. Feature-aware label space dimension reduction for multi-label classification[C]//Advances in Neural Information Processing Systems 25, Lake Tahoe, Dec 3-6, 2012: 1538-1546.
[13] BHATIA K, JAIN H, KAR P, et al. Sparse local embeddings for extreme multi-label classification[C]//Advances in Neural Information Processing Systems 28, Montreal, Dec 7-12, 2015: 730-738.
[14] KIM Y, LI P, HUANG H. Convolutional neural networks for sentence classification[EB/OL]. [2024-01-15]. https://arxiv.org/abs/1408.5882.
[15] LIU P F, QIU X P, HUANG X J, et al. Recurrent neural network for text classification with multi-task learning[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York: ACM, 2016: 2873-2879.
[16] DU C X, CHEN Z Z, FENG F L, et al. Explicit interaction model towards text classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 6359-6366.
[17] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2024-01-15]. https://arxiv.org/abs/1810.04805.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[19] XU P Y, SONG M Y, LI Z Y, et al. Taming prompt-based data augmentation for long-tailed extreme multi-label text classification[C]//Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2024: 9981-9985.
[20] BOUTELL M R, LUO J B, SHEN X P, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9): 1757-1771.
[21] READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[J]. Machine Learning, 2011, 85(3): 333-359.
[22] WANG J, YANG Y, MAO J H, et al. CNN-RNN: a unified framework for multi-label image classification[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2285-2294.
[23] CHEN Z M, WEI X S, WANG P, et al. Multi-label image recognition with graph convolutional networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5172-5181.
[24] MA Q W, YUAN C Y, ZHOU W, et al. Label-specific dual graph neural network for multi-label text classification[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 3855-3864.
[25] LIU H T, CHEN G, LI P P, et al. Multi-label text classification via joint learning from label embedding and label correlation[J]. Neurocomputing, 2021, 460: 385-398.
[26] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2024-01-15]. https://arxiv.org/abs/1312.6114.
[27] XU P Y, XIA M X, XIAO L, et al. Textual tag recommendation with multi-tag topical attention[J]. Neurocomputing, 2023, 537: 73-84.
[28] HUISKES M J, LEW M S. The MIR flickr retrieval evaluation[C]//Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval. New York: ACM, 2008: 39-43.
[29] CHUA T S, TANG J H, HONG R C, et al. NUS-WIDE: a real-world web image database from National University of Singapore[C]//Proceedings of the 2009 ACM International Conference on Image and Video Retrieval. New York: ACM, 2009: 1-9.
[30] NAKAI K, KANEHISA M. A knowledge base for predicting protein localization sites in eukaryotic cells[J]. Genomics, 1992, 14(4): 897-911.
[31] KATAKIS I, TSOUMAKAS G, VLAHAVAS I. Multilabel text classification for automated tag suggestion[C]//Proceedings of the ECML/PKDD 2008 Discovery Challenge, 2008: 75-83.
[32] ZHANG M L, ZHOU Z H. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048.
[33] WU X Z, ZHOU Z H. A unified view of multi-label performance measures[C]//Proceedings of the 2017 International Conference on Machine Learning, 2017: 3780-3788.
[34] YEH C K, WU W C, KO W J, et al. Learning deep latent space for multi-label classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1): 2838-2844.
[35] ANDREW G, ARORA R, BILMES J, et al. Deep canonical correlation analysis[C]//Proceedings of the 30th International Conference on Machine Learning, Atlanta, Jun 16-21, 2013: 1247-1255.
[36] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[37] LANCHANTIN J, SEKHON A, QI Y J. Neural message passing for multi-label classification[C]//Proceedings of the 2020 European Conference on Machine Learning and Know-ledge Discovery in Databases. Cham: Springer, 2020: 138-163.
[38] BAI J W, KONG S F, GOMES C. Disentangled variational autoencoder based multi-label classification with covariance-aware multivariate probit model[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020: 4313-4321. |