[1] DENG Z H, YANG S H, ZHANG X D, et al. Advancements and innovations in U-Net for enhanced medical image segmentation: a review[C]//Proceedings of the 2023 8th International Conference on Mechanical Engineering and Robotics Research. Piscataway: IEEE, 2023: 36-45.
[2] 张倩, 胡建文, 王鼎湘, 等. 融合注意力与Transformer的肝肿瘤CT图像分割方法[J/OL]. 小型微型计算机系统 [2024-02-10]. http://kns.cnki.net/kcms/detail/21.1106.TP.20240205. 1825.004.html.
ZHANG Q, HU J W, WANG D X, et al. Integrated attention mechanism and Transformer for liver tumor segmentation method in CT images[J/OL]. Journal of Chinese Computer Systems [2024-02-10]. http://kns.cnki.net/kcms/detail/21.1106. TP.20240205.1825.004.html.
[3] XIE Y T, YANG B, GUAN Q B, et al. Attention mechanisms in medical image segmentation: a survey[EB/OL]. [2024-03-18]. https://arxiv.org/abs/2305.17937.
[4] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[5] 崔珂, 田启川, 廉露. 基于U-Net变体的医学图像分割算法综述[J]. 计算机工程与应用, 2024, 60(11): 32-49.
CUI K, TIAN Q C, LIAN L. Review of medical image segmentation algorithms based on U-Net variants[J]. Computer Engineering and Applications, 2024, 60(11): 32-49.
[6] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and the 8th International Workshop on Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3-11.
[7] XIAO X, LIAN S, LUO Z M, et al. Weighted Res-UNet for high-quality retina vessel segmentation[C]//Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education. Piscataway: IEEE, 2018: 327-331.
[8] HUANG H M, LIN L F, TONG R F, et al. UNet 3+: a full-scale connected UNet for medical image segmentation[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 1055-1059.
[9] CHEN J N, LU Y Y, YU Q H, et al. TransUNet: transformers make strong encoders for medical image segmentation[EB/OL]. [2024-03-18]. https://arxiv.org/abs/2102.04306.
[10] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[11] PENG Z L, HUANG W, GU S Z, et al. Conformer: local features coupling global representations for visual recognition [C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 357-366.
[12] 蒋婷, 李晓宁. 采用多尺度视觉注意力分割腹部CT和心脏MR图像[J]. 中国图象图形学报, 2024, 29(1): 268-279.
JIANG T, LI X N. Segmentation of abdominal CT and cardiac MR images with multi scale visual attention[J]. Journal of Image and Graphics, 2024, 29(1): 268-279.
[13] CAO H, WANG Y Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 205-218.
[14] AZAD R, ARIMOND R, AGHDAM E K, et al. DAE-former: dual attention-guided efficient transformer for medical image segmentation[C]//Proceedings of the 2023 International Workshop on Predictive Intelligence in Medicine. Cham: Springer, 2023: 83-95.
[15] YUAN F N, ZHANG Z X, FANG Z J. An effective CNN and Transformer complementary network for medical image segmentation[J]. Pattern Recognition, 2023, 136: 109228.
[16] HUANG X H, DENG Z F, LI D D, et al. MISSFormer: an effective medical image segmentation transformer[EB/OL]. [2024-03-18]. https://arxiv.org/abs/2109.07162.
[17] HEIDARI M, KAZEROUNI A, SOLTANY M, et al. HiFormer: hierarchical multi-scale representations using transformers for medical image segmentation[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 6191-6201.
[18] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8(3): 331-368.
[19] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL]. [2024-03-18]. https://arxiv.org/abs/1804.03999.
[20] WANG H N, CAO P, WANG J Q, et al. UCTransNet: rethinking the skip connections in U-Net from a channel-wise perspective with transformer[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(3): 2441-2449.
[21] ATES G C, MOHAN P, CELIK E. Dual cross-attention for medical image segmentation[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 107139.
[22] RAHMAN M M, MARCULESCU R. Medical image segmentation via cascaded attention decoding[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 6211-6220.
[23] SU J L, AHMED M, LU Y, et al. RoFormer: enhanced transformer with rotary position embedding[J]. Neurocomputing, 2024, 568: 127063.
[24] XU W J, XU Y F, CHANG T, et al. Co-scale conv-attentional image transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9961-9970.
[25] WU K, PENG H, CHEN M, et al. Rethinking and improving relative position encoding for vision transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10033-10041.
[26] CAI Y T, WANG Y. MA-Unet: an improved version of Unet based on multi-scale and attention mechanism for medical image segmentation[C]//Proceedings of the 3rd International Conference on Electronics and Communication; Network and Computer Technology, 2022: 205-211.
[27] AZAD R, JIA Y W, AGHDAM E K, et al. Enhancing medical image segmentation with TransCeption: a multi-scale feature fusion approach[EB/OL]. [2024-04-09]. https://arxiv.org/abs/2301.10847.
[28] HU W X, YU J X, LIANG W, et al. Artifact removal from low-dose multi-energy CT images via GAN with joint loss[C]//Proceedings of the 2024 IEEE International Conference on Computational Electromagnetics. Piscataway: IEEE, 2024: 1-3.
[29] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[30] SHEN Z R, ZHANG M Y, ZHAO H Y, et al. Efficient attention: attention with linear complexities[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3530-3538.
[31] SUN G Q, PAN Y Z, KONG W K, et al. DA-TransUNet: integrating spatial and channel dual attention with transformer U-Net for medical image segmentation[EB/OL]. [2024-04-09]. https://arxiv.org/abs/2310.12570.
[32] LANDMAN B, XU Z, IGELSIAS J, et al. Miccai multi-atlas labeling beyond the cranial vault—workshop and challenge[C]//Proceedings of the MICCAI 2015: 18th International Conference. Cham: Springer, 2015: 12.
[33] BAUMGARTNER C F, KOCH L M, POLLEFEYS M, et al. An exploration of 2D and 3D deep learning techniques for cardiac MR image segmentation[C]//Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges: 8th International Workshop, Held in Conjunction with MICCAI 2017. Cham: Springer, 2018: 111-119.
[34] BILIC P, CHRIST P, LI H B, et al. The liver tumor segmentation benchmark (LiTS)[J]. Medical Image Analysis, 2023, 84: 102680.
[35] LIN A L, CHEN B Z, XU J Y, et al. DS-TransUNet: dual swin transformer U-Net for medical image segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 4005615.
[36] 杨鹤, 柏正尧. CoT-TransUNet: 轻量化的上下文Transformer医学图像分割网络[J]. 计算机工程与应用, 2023, 59(3): 218-225.
YANG H, BAI Z Y. CoT-TransUNet: lightweight context transformer medical image segmentation network[J]. Computer Engineering and Applications, 2023, 59(3): 218-225. |