[1] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[2] YI X, PAULET R, BERTINO E, et al. Homomorphic encryp-tion[M]. Berlin, Heidelberg: Springer, 2014.
[3] LI Z, LIU F, YANG W, et al. A survey of convolutional neural networks: analysis, applications, and prospects[J]. IEEE Tran-sactions on Neural Networks and Learning Systems, 2021, 33(12): 6999-7019.
[4] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[5] ACAR A, AKSU H, ULUAGAC A S, et al. A survey on homo-morphic encryption schemes: theory and implementation[J]. ACM Computing Surveys, 2018, 51(4): 1-35.
[6] RIVEST R L, SHAMIR A, ADLEMAN L. A method for obtaining digital signatures and public-key cryptosystems[J]. Communications of the ACM, 1978, 21(2): 120-126.
[7] ELGAMAL T. A public key cryptosystem and a signature scheme based on discrete logarithms[J]. IEEE Transactions on Information Theory, 1985, 31(4): 469-472.
[8] BONEH D, GOH E J, NISSIM K. Evaluating 2-DNF formulas on ciphertexts[C]//Proceedings of the 2nd Theory of Cryptography Conference, Cambridge, Feb 10-12, 2005. Berlin, Heidelberg: Springer, 2005: 325-341.
[9] GENTRY C. Fully homomorphic encryption using ideal lattices[C]//Proceedings of the 41st Annual ACM Symposium on Theory of computing. New York: ACM, 2009: 169-178.
[10] SMART N P, VERCAUTEREN F. Fully homomorphic encry-ption with relatively small key and ciphertext sizes[C]//Proceedings of the 2010 International Workshop on Public Key Cryptography. Berlin, Heidelberg: Springer, 2010: 420-443.
[11] VAN DIJK M, GENTRY C, HALEVI S, et al. Fully homomorphic encryption over the integers[C]//Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30-Jun 3, 2010. Berlin, Heidelberg: Springer, 2010: 24-43.
[12] BRAKERSKI Z, VAIKUNTANATHAN V. Fully homomorphic encryption from ring-LWE and security for key dependent messages[C]//Proceedings of the Annual Cryptology Conference. Berlin, Heidelberg: Springer, 2011: 505-524.
[13] LóPEZ-ALT A, TROMER E, VAIKUNTANATHAN V. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption[C]//Proceedings of the 44th Annual ACM Symposium on Theory of Computing. New York: ACM, 2012: 1219-1234.
[14] FAN J, VERCAUTEREN F. Somewhat practical fully homo-morphic encryption[J]. IACR Cryptology ePrint Archive, 2012: 144.
[15] CHEON J H, KIM A, KIM M, et al. Homomorphic encryption for arithmetic of approximate numbers[C]//Proceedings of the 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, Dec 3-7, 2017. Cham: Springer, 2017: 409-437.
[16] CHILLOTTI I, GAMA N, GEORGIEVA M, et al. TFHE: fast fully homomorphic encryption over the torus[J]. Journal of Cryptology, 2020, 33(1): 34-91.
[17] CHEON J H, HAN K, KIM A, et al. A full RNS variant of approximate homomorphic encryption[C]//Proceedings of the 25th International Conference on Selected Areas in Cryptography, Calgary, Aug 15-17, 2018. Cham: Springer, 2019: 347-368.
[18] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[19] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25,Lake Tahoe, Dec 3-6, 2012: 1106-1114.
[20] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-04-13]. https://arxiv.org/abs/1409.1556.
[21] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778.
[22] SALEHINEJAD H, SANKAR S, BARFETT J, et al. Recent advances in recurrent neural networks[EB/OL]. [2024-04-13]. https://arxiv.org/abs/1801.01078.
[23] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understand-ing[EB/OL]. [2024-04-13]. https://arxiv.org/abs/1810.04805.
[24] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 1877-1901.
[25] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2024-04-13]. https://arxiv.org/abs/2010.11929.
[26] GILAD-BACHRACH R, DOWLIN N, LAINE K, et al. Crypto-Nets: applying neural networks to encrypted data with high throughput and accuracy[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 201-210.
[27] LEE J, LEE E, LEE J W, et al. Precise approximation of convolutional neural networks for homomorphically encry-pted data[J]. IEEE Access, 2023, 11: 62062-62076.
[28] CHEN T, BAO H, HUANG S, et al. The-X: privacy-preserving transformer inference with homomorphic encryption[EB/OL]. [2024-04-13]. https://arxiv.org/abs/2206.00216.
[29] HAO M, LI H, CHEN H, et al. Iron: private inference on transformers[C]//Advances in Neural Information Processing Systems 35, New Orleans, Nov 28-Dec 9, 2022: 15718-15731.
[30] LU W, HUANG Z, GU Z, et al. BumbleBee: secure two-party inference framework for large transformers[J]. IACR Cryptology ePrint Archive, 2023: 1678.
[31] BJORCK N, GOMES C P, SELMAN B, et al. Understanding batch normalization[C]//Advances in Neural Information Processing Systems 31, Montréal, Dec 3-8, 2018: 7705-7716.
[32] BA J L, KIROS J R, HINTON G E. Layer normalization[EB/OL]. [2024-04-13]. https://arxiv.org/abs/1607.06450.
[33] ULYANOV D, VEDALDI A, LEMPITSKY V. Instance nor-malization: the missing ingredient for fast stylization[EB/OL]. [2024-04-13]. https://arxiv.org/abs/1607.08022.
[34] FENG J, YANG L T, ZHU Q, et al. Privacy-preserving tensor decomposition over encrypted data in a federated cloud environment[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 17(4): 857-868.
[35] FENG J, YANG L T, ZHANG R, et al. Privacy preserving high-order bi-lanczos in cloud-fog computing for industrial applications[J]. IEEE Transactions on Industrial Informatics, 2020, 18(10): 7009-7018.
[36] ZHANG P, CHENG X, SU S, et al. Task allocation under geo-indistinguishability via group-based noise addition[J]. IEEE Transactions on Big Data, 2022, 9(3): 860-877.
[37] ZHANG P, CHENG X, SU S, et al. Effective truth discovery under local differential privacy by leveraging noise-aware probabilistic estimation and fusion[J]. Knowledge Based Systems, 2023, 261: 110213.
[38] BOS J W, LAUTER K, LOFTUS J, et al. Improved security for a ring-based fully homomorphic encryption scheme[C]//Proceedings of the 14th IMA International Conference on Cryptography and Coding, Oxford, Dec 17-19, 2013. Berlin, Heidelberg: Springer, 2013: 45-64.
[39] CHABANNE H, DE WARGNY A, MILGRAM J, et al. Privacy-preserving classification on deep neural network[J]. IACR Cryptology ePrint Archive, 2017: 35.
[40] HESAMIFARD E, TAKABI H, GHASEMI M. CryptoDL: deep neural networks over encrypted data[EB/OL]. [2024-04-13]. https://arxiv.org/abs/1711.05189.
[41] SANYAL A, KUSNER M, GASCON A, et al. TAPAS: tricks to accelerate (encrypted) prediction as a service[C]//Procee-dings of the 35th International Conference on Machine Learning, Stockholmsm?ssan, Jul 10-15, 2018: 4497-4506.
[42] JIANG X, KIM M, LAUTER K, et al. Secure outsourced matrix computation and application to neural networks[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 1209-1222.
[43] ZHOU J, LI J, PANAOUSIS E, et al. Deep binarized convolutional neural network inferences over encrypted data[C]//Proceedings of the 2020 7th IEEE International Conference on Cyber Security and Cloud Computing/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud. Piscataway: IEEE, 2020: 160-167.
[44] DISABATO S, FALCETTA A, MONGELLUZZO A, et al. A privacy-preserving distributed architecture for deep-learning-as-a-service[C]//Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-8.
[45] OBLA S, GONG X, ALOUFI A, et al. Effective activation functions for homomorphic evaluation of deep neural networks[J]. IEEE Access, 2020, 8: 153098-153112.
[46] CHEON J H, KIM D, KIM D. Efficient homomorphic comparison methods with optimal complexity[C]//Proceedings of the 26th International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, Dec 7-11, 2020. Cham: Springer, 2020: 221-256.
[47] AL BADAWI A, JIN C, LIN J, et al. Towards the AlexNet moment for homomorphic encryption: HCNN, the first homo-morphic CNN on encrypted data with GPUs[J]. IEEE Tran-sactions on Emerging Topics in Computing, 2020, 9(3): 1330-1343.
[48] LEE J W, KANG H C, LEE Y, et al. Privacy-preserving machine learning with fully homomorphic encryption for deep neural network[J]. IEEE Access, 2022, 10: 30039-30054.
[49] KIM D, GUYOT C. Optimized privacy-preserving CNN inference with fully homomorphic encryption[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2175-2187.
[50] ZHU Y, WANG X, JU L, et al. FxHENN: FPGA-based acceleration framework for homomorphic encrypted CNN inference[C]//Proceedings of the 2023 IEEE International Sym-posium on High-Performance Computer Architecture. Pisca-taway: IEEE, 2023: 896-907.
[51] KIM D, PARK J, KIM J, et al. HyPHEN: a hybrid packing method and its optimizations for homomorphic encryption-based neural networks[J]. IEEE Access, 2024, 12: 3024-3038.
[52] HU Z, CHEN L, WANG Y, et al. A secure convolutional neural network inference model based on homomorphic encryption[C]//Proceedings of the 2024 7th World Conference on Computing and Communication Technologies. Piscataway: IEEE, 2024: 17-23.
[53] BRAKERSKI Z, GENTRY C, VAIKUNTANATHAN V. (Leveled) fully homomorphic encryption without bootstrapping[J]. ACM Transactions on Computation Theory, 2014, 6(3): 1-36.
[54] ZIMERMAN I, BARUCH M, DRUCKER N, et al. Convert-ing transformers to polynomial form for secure inference over homomorphic encryption[EB/OL]. [2024-04-13]. https://arxiv.org/abs/2311.08610.
[55] LIU X, LIU Z. LLMs can understand encrypted prompt: towards privacy-computing friendly transformers[EB/OL]. [2024-04-13]. https://arxiv.org/abs/2305.18396.
[56] ZHENG M, LOU Q, JIANG L. Primer: fast private transformer inference on encrypted data[C]//Proceedings of the 2023 60th ACM/IEEE Design Automation Conference. Piscataway: IEEE, 2023: 1-6.
[57] LEE S, LEE G, KIM J W, et al. HETAL: efficient privacy-preserving transfer learning with homomorphic encryption[C]//Proceedings of the 40th International Conference on Machine Learning, Honolulu, Jul 23-29, 2023: 19010-19035.
[58] ZHANG J, LIU J, YANG X, et al. Secure transformer inference made non-interactive[J]. IACR Cryptology ePrint Archive, 2024: 136. |