计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (2): 295-315.DOI: 10.3778/j.issn.1673-9418.2406089
陆佳民,张晶,冯钧,安琪
出版日期:
2025-02-01
发布日期:
2025-01-23
LU Jiamin, ZHANG Jing, FENG Jun, AN Qi
Online:
2025-02-01
Published:
2025-01-23
摘要: 知识图谱作为连接数据、知识和智能的桥梁,已被广泛应用于辅助搜索、智能推荐、问答系统、自然语言处理等多个领域。然而,随着应用场景的不断拓展,传统静态知识图谱逐渐暴露出在处理动态知识方面的局限性。时序知识图谱的出现弥补了这一缺陷,它将时间信息融入图谱结构,能够更准确地表示知识的动态变化。对时序知识图谱的构建进行了全面的研究,介绍了时序知识图谱的概念,明确了其在处理动态知识时的价值。解析了时序知识图谱构建流程,将其核心过程划分为知识抽取、知识融合和知识计算三大环节。对每个阶段进行了梳理,明确了任务定义,总结了研究现状,并探讨了大语言模型在这些任务中的应用。在知识抽取阶段,重点关注命名实体识别、关系抽取和时间信息抽取;在知识融合阶段,探讨了实体对齐和实体链接;在知识计算阶段,聚焦于知识推理。深入分析了每个阶段面临的挑战,并针对特有挑战展望了未来的研究方向。
陆佳民, 张晶, 冯钧, 安琪. 时序知识图谱构建研究综述[J]. 计算机科学与探索, 2025, 19(2): 295-315.
LU Jiamin, ZHANG Jing, FENG Jun, AN Qi. Survey on Construction Method of Temporal Knowledge Graph[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 295-315.
[1] SINGHAL A. Introducing the knowledge graph: things, not strings[EB/OL]. [2024-04-15]. https://search.googleblog.com/2012/05/introducing-knowledge-graph-things-not.html. [2] LEBLAY J, CHEKOL M W, LEBLAY J, et al. Deriving validity time in knowledge graph[C]//Proceedings of the Web Conference 2018. New York: ACM, 2018: 1771-1776. [3] PAREJA A, DOMENICONI G, CHEN J, et al. EvolveGCN: evolving graph convolutional networks for dynamic graphs[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 5363-5370. [4] LEETARU K, SCHRODT P A. GDELT: global data on events, location, and tone, 1979—2012[J]. ISA Annual Convention, 2013, 2(4): 1-49. [5] GARCÍA-DURÁN A, DUMANČIĆ S, NIEPERT M. Learning sequence encoders for temporal knowledge graph completion[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 4816-4821. [6] QIU Z Y, WU J, HU W B, et al. Temporal link prediction with motifs for social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(3): 3145-3158. [7] GAO Y Y, CHOWDHURY T, WU L F, et al. Modeling health stage development of patients with dynamic attributed graphs in online health communities[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2): 1831-1843. [8] BO M M, ZHANG M H. Learning dynamic coherence with graph attention network for biomedical entity linking[C]//Proceedings of the 2021 International Joint Conference on Neural Networks. Piscataway: IEEE, 2021: 1-8. [9] XIA L H, HUANG C, XU Y, et al. Multi-behavior sequential recommendation with temporal graph transformer[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(6): 6099-6112. [10] ZHU R, LIU B, ZHANG R W, et al. OEQA: knowledge- and intention-driven intelligent ocean engineering question-answering framework[J]. Applied Sciences, 2023, 13(23): 12915. [11] CHEN X Y, LI M Z, GAO S, et al. Follow the timeline! Generating an abstractive and extractive timeline summary in chronological order[J]. ACM Transactions on Information Systems, 2023, 41(1): 9. [12] GUO S N, LIN Y F, WAN H Y, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 34(11): 5415-5428. [13] ZHU J W, HAN X, DENG H H, et al. KST-GCN: a knowledge-driven spatial-temporal graph convolutional network for traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15055-15065. [14] ORLANDI F, GRAUX D, O’SULLIVAN D. Benchmarking RDF metadata representations: reification, singleton property and RDF[C]//Proceedings of the 2021 IEEE 15th International Conference on Semantic Computing. Piscataway: IEEE, 2021: 233-240. [15] RAU L F. Extracting company names from text[C]//Proceedings of the 7th IEEE Conference on Artificial Intelligence Application. Piscataway: IEEE, 1991: 29-32. [16] PETASIS G, VICHOT F, WOLINSKI F, et al. Using machine learning to maintain rule-based named-entity recognition and classification systems[C]//Proceedings of the 39th Annual Meeting on Association for Computational Linguistics. Stroudsburg: ACL, 2001: 426-433. [17] BIKEL D M, SCHWARTZ R, WEISCHEDEL R M. An algorithm that learns whats in a name[J]. Machine Learning, 1999, 34(1): 211-231. [18] MORWAL S. Named entity recognition using hidden Markov model (HMM)[J]. International Journal on Natural Language Computing, 2012, 1(4): 15-23. [19] CHIEU H L, NG H T. Named entity recognition: a maximum entropy approach using global information[C]//Proceedings of the 19th International Conference on Computational Linguistics, 2002. [20] LI L S, ZHOU R P, HUANG D G. Two-phase biomedical named entity recognition using CRFs[J]. Computational Biology and Chemistry, 2009, 33(4): 334-338. [21] KAZAMA J, MAKINO T, OHTA Y, et al. Tuning support vector machines for biomedical named entity recognition[C]//Proceedings of the ACL-02 Workshop on Natural Language Processing in the Biomedical Domain-Volume 3. Stroudsburg: ACL, 2002: 1-8. [22] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1103.0398. [23] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1508.01991. [24] CHIU J P C, NICHOLS E. Named entity recognition with bidirectional LSTM-CNNs[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 357-370. [25] AONE C, HALVERSON L, HAMPTON T, et al. SRA: description of the IE2 system used for MUC-7[C]//Proceedings of the 7th Message Understanding Conference. Stroudsburg: ACL, 1998. [26] NEBHI K. A rule-based relation extraction system using DBpedia and syntactic parsing[C]//Proceedings of the NLP & DBpedia Workshop Co-located with the 12th International Semantic Web Conference, 2013. [27] DOWNEY D, SCHOENMACKERS S, ETZIONI O. Sparse information extraction: unsupervised language models to the rescue[C]//Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2007: 696-703. [28] KAMBHATLA N. Combining lexical, syntactic, and semantic features with maximum entropy models for information extraction[C]//Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2004. [29] ZHOU G D, SU J, ZHANG J, et al. Exploring various knowledge in relation extraction[C]//Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Stroudsburg: ACL, 2005: 427-434. [30] CULOTTA A, MCCALLUM A, BETZ J. Integrating probabilistic extraction models and data mining to discover relations and patterns in text[C]//Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics. Stroudsburg: ACL, 2006: 296-303. [31] ZENG D, LIU K, LAI S, et al. Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics: Technical Papers. Stroudsburg: ACL, 2014: 2335-2344. [32] NGUYEN T H, GRISHMAN R. Relation extraction: perspective from convolutional neural networks[C]//Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing. Stroudsburg: ACL, 2015: 39-48. [33] SOCHER R, HUVAL B, MANNING C D, et al. Semantic compositionality through recursive matrix-vector spaces[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: ACL, 2012: 1201-1211. [34] GENG Z Q, CHEN G F, HAN Y M, et al. Semantic relation extraction using sequential and tree-structured LSTM with attention[J]. Information Sciences, 2020, 509: 183-192. [35] MIWA M, BANSAL M. End-to-end relation extraction using LSTMs on sequences and tree structures[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1601.00770. [36] ZHENG S C, WANG F, BAO H Y, et al. Joint extraction of entities and relations based on a novel tagging scheme[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1706.05075. [37] DAI D, XIAO X Y, LYU Y J, et al. Joint extraction of entities and overlapping relations using position-attentive sequence labeling[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 6300-6308. [38] XU X, ZHU Y Q, WANG X H, et al. How to unleash the power of large language models for few-shot relation extraction?[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2305.01555. [39] WADHWA S, AMIR S, WALLACE B C. Revisiting relation extraction in the era of large language models[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 15566-15589. [40] LIM C G, JEONG Y S, CHOI H J. Survey of temporal information extraction[J]. Journal of Information Processing Systems, 2019, 15(4): 931-956. [41] CHINCHOR N, ROBINSON P. MUC-7 named entity task definition[C]//Proceedings of the 7th Conference on Message Understanding. Stroudsburg: ACL, 1997: 1-21. [42] FERRO L, MANI I, SUNDHEIM B, et al. Tides temporal annotation guidelines version 1.0.2[EB/OL]. [2024-04-15]. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=981a8a22c9a8bff1e19f2c964ed77e8a41c71900. [43] PUSTEJOVSKY J, CASTAÑO J, INGRIA R, et al. TimeML: robust specification of event and temporal expressions in text[C]//New Directions in Question Answering, Papers from 2003 AAAI Spring Symposium.Menlo Park: AAAI, 2003: 28-34. [44] PARIENTE T, FUENTES J M, SANGUINO M A, et al. A model for semantic annotation of environmental resources: the TaToo semantic framework[C]//Environmental Software Systems. Frameworks of eEnvironment: 9th IFIP WG 5.11 International Symposium. Berlin, Heidelberg: Springer, 2011: 419-427. [45] JEONG Y S, JOO W T, DO H W, et al. Korean TimeML and Korean TimeBank[C]//Proceedings of the 10th International Conference on Language Resources and Evaluation, 2016: 356-359. [46] HAFFAR N, HKIRI E, ZRIGUI M. Enrichment of Arabic TimeML corpus[C]//Proceedings of the 12th International Conference on Computational Collective Intelligence. Cham: Springer, 2020: 655-667. [47] VERHAGEN M, GAIZAUSKAS R, SCHILDER F, et al. The TempEval challenge: identifying temporal relations in text[J]. Language Resources and Evaluation, 2009, 43(2): 161-179. [48] VERHAGEN M, SAURÍ R, CASELLI T, et al. SemEval-2010 task 13: TempEval-2[C]//Proceedings of the 5th International Workshop on Semantic Evaluation. New York: ACM, 2010: 57-62. [49] UZZAMAN N, LLORENS H, DERCZYNSKI L, et al. SemEval-2013 task 1: TempEval-3: evaluating time expressions, events, and temporal relations[C]//Proceedings of the 7th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2013: 1-9. [50] BETHARD S, DERCZYNSKI L, SAVOVA G, et al. SemEval-2015 task 6: clinical TempEval[C]//Proceedings of the 9th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2015: 806-814. [51] BETHARD S, SAVOVA G, CHEN W T, et al. SemEval-2016 task 12: clinical TempEval[C]//Proceedings of the 10th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2016: 1052-1062. [52] TOURILLE J, FERRET O, TANNIER X, et al. LIMSI-COT at SemEval-2017 task 12: neural architecture for temporal information extraction from clinical narratives[C]//Proceedings of the 11th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2017: 597-602. [53] STRÖTGEN J, GERTZ M, STRÖTGEN J, et al. HeidelTime: high quality rule-based extraction and normalization of temporal expressions[C]//Proceedings of the 5th International Workshop on Semantic Evaluation. New York: ACM, 2010: 321-324. [54] CHANG A X, MANNING C D. SUTIME: a library for recognizing and normalizing time expressions[C]//Proceedings of the 8th International Conference on Language Resources and Evaluation, 2012: 3735-3740. [55] LLORENS H, SAQUETE E, NAVARRO B, et al. TIPSem (English and Spanish): evaluating CRFs and semantic roles in TempEval-2[C]//Proceedings of the 5th International Workshop on Semantic Evaluation. New York: ACM, 2010: 284-291. [56] UZZAMAN N, ALLEN J F, UZZAMAN N, et al. TRIPS and TRIOS system for TempEval-2: extracting temporal information from text[C]//Proceedings of the 5th International Workshop on Semantic Evaluation. New York: ACM, 2010: 276-283. [57] HOSSAIN T, RAHMAN M M, ISLAM S. Temporal information extraction from textual data using long short term memory recurrent neural network[J].Journal of Computer Technology & Applications, 2018, 9(2): 1-6. [58] STRÖTGEN J, ZELL J, GERTZ M. HeidelTime: tuning English and developing Spanish resources for TempEval-3[C]//Proceedings of the 7th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2013: 15-19. [59] ZAVARELLA V, TANEV H. FSS-TimEx for TempEval-3: extracting temporal information from text[C]//Proceedings of the 7th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2013: 58-63. [60] ZHONG X S, SUN A X, CAMBRIA E. Time expression analysis and recognition using syntactic TokenTypes and general heuristic rules[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2017: 420-429. [61] BETHARD S. ClearTK-TimeML: a minimalist approach to TempEval 2013[C]//Proceedings of the 7th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2013: 10-14. [62] FILANNINO M, BROWN G, NENADIC G. ManTIME: temporal expression identification and normalization in the TempEval-3 challenge[C]//Proceedings of the 7th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2013: 53-57. [63] DING W T, GAO G J, SHI L F, et al. A pattern-based approach to recognizing time expressions[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 6335-6342. [64] ESCRIBANO N, RIGAU G, AGERRI R. A modular approach for multilingual timex detection and normalization using deep learning and grammar-based methods[J]. Knowledge-Based Systems, 2023, 273: 110612. [65] WANG S H, SUN X F, LI X Y, et al. GPT-NER: named entity recognition via large language models[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2304.10428. [66] ASHOK D, LIPTON Z C. PromptNER: prompting for named entity recognition[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2305.15444. [67] WEI X, CUI X Y, CHENG N, et al. ChatIE: zero-shot information extraction via chatting with ChatGPT[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2302.10205. [68] ZHENG Y, KE W, LIU Q, et al. Making LLMs as fine-grained relation extraction data augmentor[C]//Proceedings of the 33rd International Joint Conference on Artificial Intelligence, 2024: 6660-6668. [69] 冯钧, 畅阳红, 陆佳民, 等. 基于大语言模型的水工程调度知识图谱的构建与应用[J]. 计算机科学与探索, 2024, 18(6): 1637-1647. FENG J, CHANG Y H, LU J M, et al. Construction and application of knowledge graph for water engineering scheduling based on large language model[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1637-1647. [70] GAUTAM A K, LANGE L, STRÖTGEN J. Discourse-aware in-context learning for temporal expression normalization[EB/OL]. [2024-05-23]. https://arxiv.org/abs/2404.07775. [71] WU H L. Empirical study on temporal expression extraction via large language model[C]//Proceedings of the 3rd International Symposium on Computer Applications and Information Systems, 2024: 670-677. [72] CHEN M H, TIAN Y T, YANG M H, et al. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1611. 03954. [73] SUN Z Q, HU W, LI C K. Cross-lingual entity alignment via joint attribute-preserving embedding[C]//Proceedings of the 16th International Semantic Web Conference. Cham: Springer, 2017: 628-644. [74] SUN Z Q, HU W, ZHANG Q H, et al. Bootstrapping entity alignment with knowledge graph embedding[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018: 4396-4402. [75] WU Y T, LIU X, FENG Y S, et al. Relation-aware entity alignment for heterogeneous knowledge graphs[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1908.08210. [76] WU Y T, LIU X, FENG Y S, et al. Jointly learning entity and relation representations for entity alignment[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1909.09317. [77] XU C J, SU F L, LEHMANN J. Time-aware graph neural networks for entity alignment between temporal knowledge graphs[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2203. 02150. [78] CAI L, MAO X, MA M R, et al. A simple temporal information matching mechanism for entity alignment between temporal knowledge graphs[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2209.09677. [79] XU C J, SU F L, XIONG B, et al. Time-aware entity alignment using temporal relational attention[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 788-797. [80] LIU X Z, WU J Y, LI T Y, et al. Unsupervised entity alignment for temporal knowledge graphs[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 2528-2538. [81] JIA W, MA R Z, YAN L, et al. Time-aware structure matching for temporal knowledge graph alignment[J]. Data & Knowledge Engineering, 2024, 151: 102300. [82] YAN Y C, LIU L H, BAN Y K, et al. Dynamic knowledge graph alignment[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4564-4572. [83] BAI L Y, SONG X T, ZHU L. Joint multi-feature information entity alignment for cross-lingual temporal knowledge graph with BERT[J]. IEEE Transactions on Big Data, 2024: 1-13. [84] CHONG W H, LIM E P, COHEN W. Collective entity linking in tweets over space and time[C]//Advances in Information Retrieval-Proceedings of the 39th European Conference on IR Research. Cham: Springer, 2017: 82-94. [85] YANG X Y, GU X T, LIN S, et al. Learning dynamic context augmentation for global entity linking[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1909.02117. [86] ZAPOROJETS K, KAFFEE L A, DELEU J, et al. TempEL: linking dynamically evolving and newly emerging entities[C]//Advances in Neural Information Processing Systems 35, New Orleans, Nov 28-Dec 9, 2022: 1850-1866. [87] JIANG X H, SHEN Y H, SHI Z C, et al. Unlocking the power of large language models for entity alignment[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2402.15048. [88] YANG L Y, CHEN H Y, WANG X, et al. Two heads are better than one: integrating knowledge from knowledge graphs and large language models for entity alignment[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2401.16960. [89] SONG S Z, LI S S, YU J, et al. DIM: dynamic integration of multimodal entity linking with large language model[EB/OL]. [2024-08-14]. https://arxiv.org/abs/2407.12019. [90] LIPPOLIS A S, KLIRONOMOS A, MILON-FLORES D F, et al. Enhancing entity alignment between Wikidata and ArtGraph using LLMs[C]//Proceedings of the 2023 International Joint Workshop on Semantic Web and Ontology Design for Cultural Heritage, 2023. [91] TRIVEDI R, DAI H, WANG Y, et al. Know-Evolve: deep temporal reasoning for dynamic knowledge graphs[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 3462-3471. [92] TRIVEDI R, FARAJTABAR M, BISWAL P, et al. DyRep: learning representations over dynamic graphs[C]//Proceedings of the 7th International Conference on Learning Representations, 2019. [93] JIN W, QU M, JIN X S, et al. Recurrent event network: autoregressive structure inference over temporal knowledge graphs[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1904.05530. [94] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on Semantic Web. Cham: Springer, 2018: 593-607. [95] ZHU C C, CHEN M H, FAN C J, et al. Learning from history: modeling temporal knowledge graphs with sequential copy-generation networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4732-4740. [96] LIU K Z, ZHAO F, XU G D, et al. RETIA: relation-entity twin-interact aggregation for temporal knowledge graph extrapolation[C]//Proceedings of the 2023 IEEE 39th International Conference on Data Engineering. Piscataway: IEEE, 2023: 1761-1774. [97] LIU R N, YIN G S, LIU Z C, et al. Reinforcement learning with time intervals for temporal knowledge graph reasoning[J]. Information Systems, 2024, 120: 102292. [98] DONG H, WANG P Y, XIAO M, et al. Temporal inductive path neural network for temporal knowledge graph reasoning[J]. Artificial Intelligence, 2024, 329: 104085. [99] DASGUPTA S S, RAY S N, TALUKDAR P. HyTE: hyperplane-based temporally aware knowledge graph embedding[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2001-2011. [100] GOEL R, KAZEMI S M, BRUBAKER M, et al. Diachronic embedding for temporal knowledge graph completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 3988-3995. [101] LACROIX T, OBOZINSKI G, USUNIER N. Tensor decompositions for temporal knowledge base completion[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2004.04926. [102] JAIN P, RATHI S, MAUSAM, et al. Temporal knowledge base completion: new algorithms and evaluation protocols[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2005.05035. [103] YANG J F, YING X H, SHI Y J, et al. Tensor decompositions for temporal knowledge graph completion with time perspective[J]. Expert Systems with Applications, 2024, 237: 121267. [104] ZHANG F, CHEN H Z, SHI Y Z, et al. Joint framework for tensor decomposition-based temporal knowledge graph completion[J]. Information Sciences, 2024, 654: 119853. [105] SHAO P P, ZHANG D W, YANG G H, et al. Tucker decomposition-based temporal knowledge graph completion[J]. Knowledge-Based Systems, 2022, 238: 107841. [106] YU M, GUO J J, YU J, et al. TBDRI: block decomposition based on relational interaction for temporal knowledge graph completion[J]. Applied Intelligence, 2023, 53(5): 5072-5084. [107] XIA Y W, WANG D, LIU Q, et al. Chain-of-history reasoning for temporal knowledge graph forecasting[C]//Proceedings of the Findings of the Association for Computational Linguistics: ACL 2024. Stroudsburg: ACL, 2024: 16144-16159. [108] WANG J P, SUN K, LUO L H, et al. Large language models-guided dynamic adaptation for temporal knowledge graph reasoning[EB/OL]. [2024-08-14]. https://arxiv.org/abs/2405.14170. [109] LIAO R T, JIA X, LI Y Z, et al. GenTKG: generative forecasting on temporal knowledge graph with large language models[C]//Proceedings of the Findings of the Association for Computational Linguistics: NAACL 2024. Stroudsburg: ACL, 2024: 4303-4317. [110] LUO R L, GU T L, LI H L, et al. Chain of history: learning and forecasting with LLMs for temporal knowledge graph completion[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2401.06072. [111] LI Q, CHEN Z, JI C, et al. LLM-based multi-level knowledge generation for few-shot knowledge graph completion[C]//Proceedings of the 33rd International Joint Conference on Artificial Intelligence, 2024: 2135-2143. |
[1] | 荆博祥, 王海荣, 王彤, 杨振业. 多模态特征增强的双层融合知识推理方法[J]. 计算机科学与探索, 2025, 19(2): 406-416. |
[2] | 冯钧, 畅阳红, 陆佳民, 唐海麟, 吕志鹏, 邱钰淳. 基于大语言模型的水工程调度知识图谱的构建与应用[J]. 计算机科学与探索, 2024, 18(6): 1637-1647. |
[3] | 刘昕, 高会泉, 邵长恒, 陈子良, 卢文娟, 杨会如. 融合知识推理与相似度检索的民众诉求大模型构建与应用[J]. 计算机科学与探索, 2024, 18(11): 2940-2953. |
[4] | 裴炳森, 李欣, 蒋章涛, 刘明帅. 基于大语言模型的公安专业小样本知识抽取方法研究[J]. 计算机科学与探索, 2024, 18(10): 2630-2642. |
[5] | 张才科, 李小龙, 郑胜, 蔡家骏, 叶小舟, 罗静. 基于大语言模型的知识图谱构建及应用研究[J]. 计算机科学与探索, 2024, 18(10): 2656-2667. |
[6] | 彭鐄, 曾维新, 周杰, 唐九阳, 赵翔. 基于图神经网络的实体对齐表示学习方法比较研究[J]. 计算机科学与探索, 2023, 17(10): 2343-2357. |
[7] | 孙水发, 李小龙, 李伟生, 雷大江, 李思慧, 杨柳, 吴义熔. 图神经网络应用于知识图谱推理的研究综述[J]. 计算机科学与探索, 2023, 17(1): 27-52. |
[8] | 董文波, 孙仕亮, 殷敏智. 医学知识推理研究现状与发展[J]. 计算机科学与探索, 2022, 16(6): 1193-1213. |
[9] | 张子辰, 岳昆, 祁志卫, 段亮. 时序知识图谱的增量构建[J]. 计算机科学与探索, 2022, 16(3): 598-607. |
[10] | 薛东前, 翟岩慧, 张少霞, 李德玉, 徐伟华. 决策蕴涵与可变决策蕴涵上的推理规则研究[J]. 计算机科学与探索, 2022, 16(10): 2357-2364. |
[11] | 范媛媛, 李忠民. 中文医学知识图谱研究及应用进展[J]. 计算机科学与探索, 2022, 16(10): 2219-2233. |
[12] | 折延宏,李美丽. 多粒度空间与知识推理[J]. 计算机科学与探索, 2016, 10(6): 884-890. |
[13] | 苏开乐,陈清亮+,岳伟亚. 一种规约于可满足性问题(SAT)的知识推理算法* [J]. 计算机科学与探索, 2007, 1(1): 79-86. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 218
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 263
|
|
|||||||||||||||||||||||||||||||||||||||||||||