[1] GHAFIR I, HAMMOUDEH M, PRENOSIL V, et al. Detection of advanced persistent threat using machine-learning correlation analysis[J]. Future Generation Computer Systems, 2018, 89: 349-359.
[2] LI Z Y, CHEN Q A, YANG R Q, et al. Threat detection and investigation with system-level provenance graphs: a survey[J]. Computers & Security, 2021, 106: 102282.
[3] CHEN T M, DONG C Y, LV M Q, et al. APT-KGL: an intelligent APT detection system based on threat knowledge and heterogeneous provenance graph learning[J]. IEEE Transactions on Dependable and Secure Computing, 2022(1): 1-15.
[4] LI Q M, HAN Z C, WU X M. Deeper insights into graph convolutional networks for semi-supervised learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 3538-3545.
[5] HOSSAIN M N, MILAJERDI S M, WANG J, et al. SLEUTH: real-time attack scenario reconstruction from COTS audit data[C]//Proceedings of the 26th USENIX Security Symposium, 2017: 487-504.
[6] MILAJERDI S M, GJOMEMO R, ESHETE B, et al. HOLMES: real-time APT detection through correlation of suspicious information flows[C]//Proceedings of the 2019 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2019: 1137-1152.
[7] HOSSAIN M N, SHEIKHI S, SEKAR R. Combating dependence explosion in forensic analysis using alternative tag propagation semantics[C]//Proceedings of the 2020 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2020: 1139-1155.
[8] MANZOOR E, MILAJERDI S M, AKOGLU L. Fast memory-efficient anomaly detection in streaming heterogeneous graphs[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1035-1044.
[9] MILAJERDI S M, ESHETE B, GJOMEMO R, et al. POIROT: aligning attack behavior with kernel audit records for cyber threat hunting[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 1795-1812.
[10] ALSAHEEL A, NAN Y, MA S, et al. A sequence-based learning approach for attack investigation[C]//Proceedings of the 30th Security Symposium, 2021: 3005-3022.
[11] LIU F C, WEN Y, ZHANG D X, et al. Log2vec: a heterogeneous graph embedding based approach for detecting cyber threats within enterprise[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 1777-1794.
[12] DENG D. DBSCAN clustering algorithm based on density[C]//Proceedings of the 2020 7th International Forum on Electrical Engineering and Automation. Piscataway: IEEE, 2020: 949-953.
[13] HAN X Y, PASQUIER T, BATES A, et al. UNICORN: runtime provenance-based detector for advanced persistent threats[EB/OL]. [2024-03-16]. https://arxiv.org/abs/2001.01525.
[14] SHERVASHIDZE N, SCHWEITZER P, VAN LEEUWEN E J, et al. Weisfeiler-Lehman graph kernels[J]. Journal of Machine Learning Research, 2011, 12(9): 2539-2561.
[15] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24.
[16] ZHAO J, YAN Q B, LIU X D, et al. Cyber threat intelligence modeling based on heterogeneous graph convolutional network[C]//Proceedings of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses, 2020: 241-256.
[17] BURGER E W, GOODMAN M D, KAMPANAKIS P, et al. Taxonomy model for cyber threat intelligence information exchange technologies[C]//Proceedings of the 2014 ACM Workshop on Information Sharing & Collaborative Security. New York: ACM, 2014: 51-60.
[18] 董程昱, 吕明琪, 陈铁明, 等. 基于异构溯源图学习的APT攻击检测方法[J]. 计算机科学, 2023, 50(4): 359-368.
DONG C Y, LYU M Q, CHEN T M, et al. Heterogeneous provenance graph learning model based APT detection[J]. Computer Science, 2023, 50(4): 359-368.
[19] WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2022-2032.
[20] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations, 2018.
[21] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2024-03-16]. https://arxiv.org/abs/1609.02907.
[22] WANG K, SHEN W Z, YANG Y Y, et al. Relational graph attention network for aspect-based sentiment analysis[EB/OL]. [2024-03-16]. https://arxiv.org/abs/2004.12362.
[23] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on the Semantic Web. Cham: Springer, 2018: 593-607.
[24] XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks[C]//Proceedings of the 35th International Conference on Machine Learning, 2018: 5453-5462.
[25] AHMED Y, ASYHARI A T, ARAFATUR RAHMAN M. A cyber kill chain approach for detecting advanced persistent threats[J]. Computers, Materials & Continua, 2021, 67(2): 2497-2513.
[26] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297.
[27] HU Z, DONG Y, WANG K, et al. Heterogeneous graph transformer[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 2704-2710.
[28] HU L M, YANG T C, SHI C, et al. Heterogeneous graph attention networks for semi-supervised short text classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 4821-4830.
[29] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[EB/OL]. [2024-03-18]. https://arxiv.org/abs/1706.02216.
[30] WANG S, WANG Z L, ZHOU T, et al. THREATRACE: detecting and tracing host-based threats in node level through provenance graph learning[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 3972-3987.
[31] WANG Q, HASSAN W U, LI D, et al. You are what you do: hunting stealthy malware via data provenance analysis[C]//Proceedings of the 2020 Network and Distributed System Security Symposium, 2020.
[32] YING R, BOURGEOIS D, YOU J X, et al. GNNExplainer: generating explanations for graph neural networks[C]//Advances in Neural Information Processing Systems 32, 2019: 9240-9251. |