[1] 马忠红. 论刑事案件的构成要素[J]. 中国人民公安大学学报(社会科学版), 2012, 28(5): 91-99.
MA Z H. The constitutive elements of a criminal case[J]. Journal of Chinese People??s Public Security University (Social Sciences Edition), 2012, 28(5): 91-99.
[2] 陈剑, 何涛, 闻英友, 等. 基于BERT模型的司法文书实体识别方法[J]. 东北大学学报(自然科学版), 2020, 41(10): 1382-1387.
CHEN J, HE T, WEN Y Y, et al. Entity recognition method for judicial documents based on BERT model[J]. Journal of Northeastern University (Natural Science), 2020, 41(10): 1382-1387.
[3] 鲍彤, 章成志. ChatGPT中文信息抽取能力测评: 以三种典型的抽取任务为例[J]. 数据分析与知识发现, 2023, 7(9): 1-11.
BAO T, ZHANG C Z. Extracting Chinese information with ChatGPT: an empirical study by three typical tasks[J]. Data Analysis and Knowledge Discovery, 2023, 7(9): 1-11.
[4] 冯钧, 畅阳红, 陆佳民, 等. 基于大语言模型的水工程调度知识图谱的构建与应用[J]. 计算机科学与探索, 2024, 18(6): 1637-1647.
FENG J, CHANG Y H, LU J M, et al. Construction and application of knowledge graph for water engineering scheduling based on large language model[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1637-1647.
[5] 裴炳森, 李欣, 吴越. 基于ChatGPT的电信诈骗案件类型影响力评估[J]. 计算机科学与探索, 2023, 17(10): 2413-2425.
PEI B S, LI X, WU Y. Influence evaluation of telecom fraud case types based on ChatGPT[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2413-2425.
[6] POLAK M P, MORGAN D. Extracting accurate materials data from research papers with conversational language models and prompt engineering[J]. Nature Communications, 2024, 15: 1569.
[7] 田萍芳, 刘恒永, 高峰, 等. 基于大语言模型的本体提示指导的司法命名实体识别[J]. 武汉大学学报(理学版), 2025, 71(2): 219-231.
TIAN P F, LIU H Y, GAO F, et al. Judicial named entity recognition by ontology prompt guidance based on large language model[J]. Journal of Wuhan University (Natural Science Edition), 2025, 71(2): 219-231.
[8] 李春楠, 王雷, 孙媛媛, 等. 基于BERT的盗窃罪法律文书命名实体识别方法[J]. 中文信息学报, 2021, 35(8): 73-81.
LI C N, WANG L, SUN Y Y, et al. BERT based named entity recognition for legal texts on theft cases[J]. Journal of Chinese Information Processing, 2021, 35(8): 73-81.
[9] 曾兰兰, 王以松, 陈攀峰. 基于BERT和联合学习的裁判文书命名实体识别[J]. 计算机应用, 2022, 42(10): 3011-3017.
ZENG L L, WANG Y S, CHEN P F. Named entity recognition based on BERT and joint learning for judgment documents[J]. Journal of Computer Applications, 2022, 42(10): 3011-3017.
[10] FENG S Y, GANGAL V, KANG D, et al. GenAug: data augmentation for finetuning text generators[C]//Proceedings of Deep Learning Inside Out (DeeLIO): The 1st Workshop on Knowledge Extraction and Integration for Deep Learning Architectures. Stroudsburg: ACL, 2020: 29-42.
[11] BOGDANOV S, CONSTANTIN A, BERNARD T, et al. NuNER: entity recognition encoder pre-training via LLM-annotated data[C]//Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2024: 11829-11841.
[12] YE J J, XU N, WANG Y K, et al. LLM-DA: data augmentation via large language models for few-shot named entity recognition[EB/OL]. [2024-10-21]. https://arxiv.org/abs/2402.14568.
[13] SANTOSO J, SUTANTO P, CAHYADI B, et al. Pushing the limits of low-resource NER using LLM artificial data generation[C]//Findings of the Association for Computational Linguistics: ACL 2024. Stroudsburg: ACL, 2024: 9652-9667.
[14] LYU S F, SUN L H, YI H X, et al. Converse attention knowledge transfer for low-resource named entity recognition[EB/OL]. [2024-10-21]. https://arxiv.org/abs/1906.01183.
[15] JAIN A, PARANJAPE B, LIPTON Z C. Entity projection via machine translation for cross-lingual NER[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 1083-1092.
[16] 方晔玮, 王铭涛, 陈文亮, 等. 基于自动弱标注数据的跨领域命名实体识别[J]. 中文信息学报, 2022, 36(3): 73-81.
FANG Y W, WANG M T, CHEN W L, et al. Cross-domain NER using automatically partial-annotated data[J]. Journal of Chinese Information Processing, 2022, 36(3): 73-81.
[17] ZHOU R, LI X, BING L D, et al. Improving self-training for cross-lingual named entity recognition with contrastive and prototype learning[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 4018-4031.
[18] YANG Z L, SALAKHUTDINOV R, COHEN W W. Transfer learning for sequence tagging with hierarchical recurrent networks[EB/OL]. [2024-10-21]. https://arxiv.org/abs/1703.06345.
[19] 丁建平, 李卫军, 刘雪洋, 等. 命名实体识别研究综述[J]. 计算机工程与科学, 2024, 46(7): 1296-1310.
DING J P, LI W J, LIU X Y, et al. A review of named entity recognition research[J]. Computer Engineering & Science, 2024, 46(7): 1296-1310.
[20] WEI X, CUI X Y, CHENG N, et al. ChatIE: zero-shot information extraction via chatting with ChatGPT[EB/OL]. [2024-10-21]. https://arxiv.org/abs/2302.10205.
[21] WANG S, SUN X, LI X, et al. GPT-NER: named entity recognition via large language models[EB/OL]. [2024-10-21]. https://arxiv.org/abs/2304.10428.
[22] JUNG S J, KIM H, JANG K S. LLM based biological named entity recognition from scientific literature[C]//Proceedings of the 2024 IEEE International Conference on Big Data and Smart Computing. Piscataway: IEEE, 2024: 433-435.
[23] ZHAN Z F, ZHOU S, ZHOU H X, et al. An evaluation of DeepSeek models in biomedical natural language processing[EB/OL]. [2025-03-12]. https://arxiv.org/abs/2503.00624.
[24] HU E J, WALLIS P, ALLEN-ZHU Z, et al. LoRA: low-rank adaptation of large language models[EB/OL]. [2024-10-21]. https://arxiv.org/abs/2106.09685.
[25] GUI H H, YUAN L, YE H B, et al. IEPile: unearthing large scale schema-conditioned information extraction corpus[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2024: 127-146.
[26] MA Y X, SHAO Y Q, WU Y Y, et al. LeCaRD: a legal case retrieval dataset for Chinese law system[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 2342-2348.
[27] 苏剑林. 鱼与熊掌兼得:融合检索和生成的SimBERT 模型[EB/OL]. [2024-10-21]. https://spaces.ac.cn/archives/7427.
SU J L. Fish and bear??s paw: SimBERT model for fusion of retrieval and generation[EB/OL]. [2024-10-21]. https://spaces. ac.cn/archives/7427.
[28] WEI J, ZOU K. EDA: easy data augmentation techniques for boosting performance on text classification tasks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 6381-6387.
[29] PEREZ E, KIELA D, CHO K. True few-shot learning with language models[C]//Advances in Neural Information Processing Systems 34, 2021: 11054-11070.
[30] LU Y, BARTOLO M, MOORE A, et al. Fantastically ordered prompts and where to find them: overcoming few-shot prompt order sensitivity[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 8086-8098.
[31] WU S, SONG X N, FENG Z H. MECT: multi-metadata embedding based cross-transformer for Chinese named entity recognition[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 1529-1539.
[32] LI J Y, FEI H, LIU J, et al. Unified named entity recognition as word-word relation classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(10): 10965-10973.
[33] 刘权, 余正涛, 高盛祥, 等. 融合案件要素的相似案例匹配[J]. 中文信息学报, 2022, 36(11): 140-147.
LIU Q, YU Z T, GAO S X, et al. Incorporating case elements for case matching[J]. Journal of Chinese Information Processing, 2022, 36(11): 140-147.
[34] 曹发鑫, 孙媛媛, 王治政, 等. 面向借贷案件的相似案例匹配模型[J]. 计算机工程, 2024, 50(1): 306-312.
CAO F X, SUN Y Y, WANG Z Z, et al. Similar case matching model for lending cases[J]. Computer Engineering, 2024, 50(1): 306-312.
[35] 李林睿, 王东升, 范红杰. 基于法条知识的事理型类案检索方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1357-1365.
LI L R, WANG D S, FAN H J. Fact-based similar case retrieval methods based on statutory knowledge[J]. Journal of Zhejiang University (Engineering Science), 2024, 58(7): 1357-1365. |