[1] VAN BASSHUYSEN P. Radical markets: uprooting capitalism and democracy for a just society[J]. Review of Political Economy, 2019, 31(1): 137-141.
[2] COOK R D. Detection of influential observation in linear regression[J]. Technometrics, 1977, 19(1): 15-18.
[3] KOH P W, LIANG P. Understanding black-box predictions via influence functions[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 1885-1894.
[4] DASGUPTA A, DRINEAS P, HARB B, et al. Sampling algorithms and coresets for regression[J]. SIAM Journal on Computing, 2009, 38(5): 2060-2078.
[5] SHAPLEY L S. A value for n-person games[M]//Contributions to the theory of games (AM-28). Princeton: Princeton University Press, 1953: 307-318.
[6] GHORBANI A, ZOU J. Data Shapley: equitable valuation of data for machine learning[C]//Proceedings of the 36th International Conference on Machine Learning, 2019: 2242-2251.
[7] ROTH A E. The Shapley value: essays in honor of Lloyd S. Shapley[M]. Cambridge: Cambridge University Press, 1988.
[8] DUBEY P. On the uniqueness of the Shapley value[J]. International Journal of Game Theory, 1975, 4(3): 131-139.
[9] JIA R, DAO D, WANG B, et al. Towards efficient data valuation based on the Shapley value[C]//Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, 2019: 1167-1176.
[10] HAN D, WOOLDRIDGE M, ROGERS A, et al. Replication-robust payoff-allocation for machine learning data markets[EB/OL]. [2024-11-19]. https://arxiv.org/abs/2006.14583.
[11] ROZEMBERCZKI B, WATSON L, BAYER P, et al. The Shapley value in machine learning[EB/OL]. [2024-11-22]. https://arxiv.org/abs/2202.05594.
[12] COHEN S B, RUPPIN E, DROR G. Feature selection based on the Shapley value[C]//Proceedings of the 19th International Joint Conference on Artificial Intelligence, 2005: 665-670.
[13] WANG J, WIENS J, LUNDBERG S. Shapley flow: a graph-based approach to interpreting model predictions[C]//Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, 2021: 721-729.
[14] FUMAGALLI F, MUSCHALIK M, KOLPACZKI P, et al. SHAP-IQ: unified approximation of any-order Shapley interactions[C]//Advances in Neural Information Processing Systems 36, 2023.
[15] MUSCHALIK M, BANIECKI H, FUMAGALLI F, et al. shapiq: Shapley interactions for machine learning[EB/OL]. [2024-12-18]. http://arxiv.org/abs/2410.01649.
[16] MUSCHALIK M, FUMAGALLI F, HAMMER B, et al. Beyond TreeSHAP: efficient computation of any-order Shapley interactions for tree ensembles[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(13): 14388-14396.
[17] JIA R, DAO D, WANG B, et al. Efficient task-specific data valuation for nearest neighbor algorithms[EB/OL]. [2024-11-28]. https://arxiv.org/abs/1908.08619.
[18] TANG S Y, GHORBANI A, YAMASHITA R, et al. Data valuation for medical imaging using Shapley value and application to a large-scale chest X-ray dataset[J]. Scientific Reports, 2021, 11: 8366.
[19] WU Z, XU X, SIM R H L, et al. Data valuation in federated learning[M]//Federated learning. Amsterdam: Elsevier, 2024: 281-296.
[20] KWON Y, ZOU J. Beta Shapley: a unified and noise-reduced data valuation framework for machine learning[EB/OL]. [2024-11-30]. https://arxiv.org/abs/2110.14049, 2021.
[21] TIAN Y J, DING Y R, FU S J, et al. Data boundary and data pricing based on the Shapley value[J]. IEEE Access, 2022, 10: 14288-14300.
[22] XU X, LAM T, FOO C S, et al. Model Shapley: equitable model valuation with black-box access[C]//Advances in Neural Information Processing Systems 36, 2023.
[23] AGARWAL A, DAHLEH M, SARKAR T. A marketplace for data: an algorithmic solution[C]//Proceedings of the 2019 ACM Conference on Economics and Computation. New York: ACM, 2019: 701-726.
[24] GHORBANI A, KIM M, ZOU J. A distributional framework for data valuation[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 3535-3544.
[25] XU X, WU Z, FOO C S, et al. Validation free and replication robust volume-based data valuation[C]//Advances in Neural Information Processing Systems 34, 2021.
[26] KOLPACZKI P, BENGS V, MUSCHALIK M, et al. Approximating the Shapley value without marginal contributions[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(12): 13246-13255.
[27] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial data-bases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, 1996: 226-231.
[28] ARYA S, MOUNT D M. Approximate nearest neighbor queries in fixed dimensions[C]//Proceedings of the 4th Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 1993: 271-280.
[29] OMOHUNDRO S M. Five balltree construction algorithms[EB/OL]. [2024-12-15]. http://www.icsi.berkeley.edu/icsi/publication_details.
[30] DONG E S, DU H R, GARDNER L. An interactive web-based dashboard to track COVID-19 in real time[J]. The Lancet Infectious Diseases, 2020, 20(5): 533-534.
[31] ALMEIDA T A, HIDALGO J M G, YAMAKAMI A. Contributions to the study of SMS spam filtering: new collection and results[C]//Proceedings of the 11th ACM Symposium on Document Engineering. New York: ACM, 2011: 259-262.
[32] DENG L. The MNIST database of handwritten digit images for machine learning research[J]. IEEE Signal Processing Magazine, 2012, 29(6): 141-142.
[33] WOLBERG W O M. Breast cancer Wisconsin (diagnostic)[DS/OL]. UCI Machine Learning Repository, 1993. [2024-12-08]. https://archive.ics.uci.edu/dataset/17.
[34] SIM R H L, ZHANG Y, CHAN M C, et al. Collaborative machine learning with incentive-aware model rewards[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 8927-8936.
[35] BRODERSEN K H, ONG C S, STEPHAN K E, et al. The balanced accuracy and its posterior distribution[C]//Proceedings of the 20th International Conference on Pattern Recognition. Washington: IEEE Computer Society, 2010: 3121-3124. |