计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (3): 582-601.DOI: 10.3778/j.issn.1673-9418.2405013
郑德生,孙涵明,王立远,段垚鑫,李晓瑜
出版日期:
2025-03-01
发布日期:
2025-02-28
ZHENG Desheng, SUN Hanming, WANG Liyuan, DUAN Yaoxin, LI Xiaoyu
Online:
2025-03-01
Published:
2025-02-28
摘要: 多元时间序列(MTS)作为众多领域智能化技术的关键数据依据,其随时间推移记录了系统中多个变量的状态变化。聚类技术作为一个数据挖掘核心工具可以将数据按照其结构相似性划分为不同的簇,通过识别数据的结构和内在关系挖掘系统发展规律和变量相关关系。面对多元时间序列数据结构的复杂性、变量之间的关联性以及数据高维性等为聚类分析带来的挑战,国内外已经开展了大量相关研究工作。鉴于此,对多元时间序列数据场景下的聚类分析算法进行综述。基于特征提取方式、相似性度量算法、聚类划分框架等分类标准,对现有多元时间序列聚类算法进行对比分析。对于每一类多元时间序列聚类技术,从算法原理、代表性方法、算法优缺点以及解决的问题等方面进行详细总结与剖析。进一步讨论了常用的评价标准,以及多元时间序列聚类相关公开数据集。从多变量时序数据结构特殊性出发对现有多元时间序列聚类存在的挑战及未来发展方向进行了总结与展望。
郑德生, 孙涵明, 王立远, 段垚鑫, 李晓瑜. 多元时间序列聚类算法综述[J]. 计算机科学与探索, 2025, 19(3): 582-601.
ZHENG Desheng, SUN Hanming, WANG Liyuan, DUAN Yaoxin, LI Xiaoyu. Review of Multivariate Time Series Clustering Algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 582-601.
[1] CHANG R, GHONIEM M, KOSARA R, et al. WireVis: visua-lization of categorical, time-varying data from financial tran-sactions[C]//Proceedings of the 2007 IEEE Symposium on Visual Analytics Science and Technology. Piscataway: IEEE, 2007: 155-162. [2] CHO M, KIM B, BAE H J, et al. Stroscope: multi-scale visua-lization of irregularly measured time-series data[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(5): 808-821. [3] GHIL M, ALLEN M R, DETTINGER M D, et al. Advanced spectral methods for climatic time series[J]. Reviews of Geophysics, 2002, 40(1). [4] JELINEK F, BAHL L, MERCER R. Design of a linguistic statistical decoder for the recognition of continuous speech[J]. IEEE Transactions on Information Theory, 1975, 21(3): 250-256. [5] RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257-286. [6] BICKEL S, SCHEFFER T. Multi-view clustering[C]//Proceedings of the 4th IEEE International Conference on Data Mining. Piscataway: IEEE, 2004: 19-26. [7] BUCAK S S, JIN R, JAIN A K. Multiple kernel learning for visual object recognition: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1354-1369. [8] AGHABOZORGI S, SEYED SHIRKHORSHIDI A, YING WAH T. Time-series clustering-a decade review[J]. Information Systems, 2015, 53: 16-38. [9] SINGHAL A, SEBORG D E. Clustering multivariate time-series data[J]. Journal of Chemometrics, 2005, 19(8): 427-438. [10] YANG Y, WANG H. Multi-view clustering: a survey[J]. Big Data Mining and Analytics, 2018, 1(2): 83-107. [11] KAVITHA V, PUNITHAVALLI M. Clustering time series data stream-a literature survey[EB/OL]. [2024-03-15]. https://arxiv.org/abs/1005.4270. [12] ARORA S, CHANA I. A survey of clustering techniques for big data analysis[C]//Proceedings of the 2014 5th International Conference-Confluence The Next Generation Information Technology Summit (Confluence). Piscataway: IEEE, 2014: 59-65. [13] ZOLHAVARIEH S, AGHABOZORGI S, TEH Y W. A review of subsequence time series clustering[J]. The Scientific World Journal, 2014(1): 312521. [14] XU S J, CHAN H K, ZHANG T T. Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 122: 169-180. [15] XIE C, CHEN W, HUANG X X, et al. VAET: a visual analytics approach for E-transactions time-series[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1743-1752. [16] RANI S, SIKKA G. Recent techniques of clustering of time series data: a survey[J]. International Journal of Computer Applications, 2012, 52(15): 1-9. [17] ALI M, ALQAHTANI A, JONES M W, et al. Clustering and classification for time series data in visual analytics: a survey[J]. IEEE Access, 2019, 7: 181314-181338. [18] ALQAHTANI A, ALI M, XIE X H, et al. Deep time-series clustering: a review[J]. Electronics, 2021, 10(23): 3001. [19] CHUNG F L, FU T C, NG V, et al. An evolutionary approach to pattern-based time series segmentation[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(5): 471-489. [20] KEOGH E, CHU S, HART D, et al. Segmenting time series: a survey and novel approach[M]//Data mining in time series databases. Singapore: World Scientific, 2004: 1-21. [21] KEOGH E, PAZZANI M, CHAKRABARTI K, et al. A simple dimensionality reduction technique for fast similarity search in large time series databases[C]//Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2000: 122-133. [22] KEOGH E J, PAZZANI M J, KEOGH E J, et al. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback[C]//Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining. New York: ACM, 1998: 239-243. [23] KEOGH E, CHAKRABARTI K, PAZZANI M, et al. Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge and Information Systems, 2001, 3(3): 263-286. [24] LIN J, KEOGH E, LONARDI S, et al. A symbolic representation of time series, with implications for streaming algorithms[C]//Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. New York: ACM, 2003: 2-11. [25] OU-YANG K, JIA W Y, ZHOU P, et al. A new approach to transforming time series into symbolic sequences[C]//Proceedings of the 1st Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society. Piscataway: IEEE, 1999: 974. [26] CHANG P C, FAN C Y, LIU C H. Integrating a piecewise linear representation method and a neural network model for stock trading points prediction[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2009, 39(1): 80-92. [27] 张弛, 陈梅, 张锦宏. 紧凑性约束下的形状提取多元时序聚类[J]. 计算机科学与探索, 2024, 18(5): 1243-1258. ZHANG C, CHEN M, ZHANG J H. Clustering multivariate time series data based on shape extraction with compactness constraint[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1243-1258. [28] KEOGH E, CHAKRABARTI K, PAZZANI M, et al. Locally adaptive dimensionality reduction for indexing large time series databases[C]//Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2001: 151-163. [29] PRATT K B, FINK E. Search for patterns in compressed time series[J]. International Journal of Image and Graphics, 2002, 2(1): 89-106. [30] 周大镯, 李敏强. 基于序列重要点的时间序列分割[J]. 计算机工程, 2008, 34(23): 14-16. ZHOU D Z, LI M Q. Time series segmentation based on series importance point[J]. Computer Engineering, 2008, 34(23): 14-16. [31] WANG X Z, WIRTH A, WANG L. Structure-based statistical features and multivariate time series clustering[C]//Proceedings of the 7th IEEE International Conference on Data Mining. Piscataway: IEEE, 2007: 351-360. [32] WARREN LIAO T. A clustering procedure for exploratory mining of vector time series[J]. Pattern Recognition, 2007, 40(9): 2550-2562. [33] TIANO D, BONIFATI A, NG R, et al. FeatTS: feature-based time series clustering[C]//Proceedings of the 2021 International Conference on Management of Data. New York: ACM, 2021: 2784-2788. [34] VEERARAGHAVAN A, CHELLAPPA R, ROY-CHOWDHURY A K. The function space of an activity[C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2006: 959-968. [35] ZAKARIA J, MUEEN A, KEOGH E. Clustering time series using unsupervised-shapelets[C]//Proceedings of the 2012 IEEE 12th International Conference on Data Mining. Piscataway: IEEE, 2012: 785-794. [36] ZHANG N, SUN S L. Multiview unsupervised shapelet learning for multivariate time series clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4981-4996. [37] LI H L, WU X L, WAN X J, et al. Time series clustering via matrix profile and community detection[J]. Advanced Engineering Informatics, 2022, 54: 101771. [38] BAGNALL A, LINES J, HILLS J, et al. Time-series classification with COTE: the collective of transformation-based ensembles[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(9): 2522-2535. [39] CHAN K P, FU A W. Efficient time series matching by wavelets[C]//Proceedings of the 15th International Conference on Data Engineering. Piscataway: IEEE, 1999: 126-133. [40] YAN R, LIAO J Q, YANG J, et al. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering[J]. Expert Systems with Applications, 2021, 169: 114513. [41] BOUVEYRON C, CELEUX G, MURPHY T B, et al. Model-based clustering and classification for data science: with applications in R[M]. Cambridge: Cambridge University Press, 2019. [42] BARRAGAN J F, FONTES C H, EMBIRUÇU M. A wavelet-based clustering of multivariate time series using a multiscale SPCA approach[J]. Computers & Industrial Engineering, 2016, 95: 144-155. [43] KAWAGOE K, UEDA T. A similarity search method of time series data with combination of Fourier and wavelet transforms[C]//Proceedings of the 9th International Symposium on Temporal Representation and Reasoning. Piscataway: IEEE, 2002: 86-92. [44] LI H L. Multivariate time series clustering based on common principal component analysis[J]. Neurocomputing, 2019, 349: 239-247. [45] DING X O, YU S J, WANG M X, et al. Abnormal detection of industrial time series data based on correlation analysis[J]. Journal of Software, 2020, 31(3): 726-747. [46] LI H L, LIN C P, WAN X J, et al. Feature representation and similarity measure based on covariance sequence for multivariate time series[J]. IEEE Access, 2019, 7: 67018-67026. [47] 李正欣, 郭建胜, 惠晓滨, 等. 基于共同主成分的多元时间序列降维方法[J]. 控制与决策, 2013, 28(4): 531-536. LI Z X, GUO J S, HUI X B, et al. Dimension reduction method for multivariate time series based on common principal component[J]. Control and Decision, 2013, 28(4): 531-536. [48] FU T C. A review on time series data mining[J]. Engineering Applications of Artificial Intelligence, 2011, 24(1): 164-181. [49] OWSLEY L M D, ATLAS L E, BERNARD G D. Automatic clustering of vector time-series for manufacturing machine monitoring[C]//Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 1997: 3393-3396. [50] KALPAKIS K, GADA D, PUTTAGUNTA V. Distance measures for effective clustering of ARIMA time-series[C]//Proceedings of the 2001 IEEE International Conference on Data Mining. Piscataway: IEEE, 2001: 273-280. [51] GHASSEMPOUR S, GIROSI F, MAEDER A. Clustering multivariate time series using hidden Markov models[J]. International Journal of Environmental Research and Public Health, 2014, 11(3): 2741-2763. [52] MIKALSEN K Ø, BIANCHI F M, SOGUERO-RUIZ C, et al. Time series cluster kernel for learning similarities between multivariate time series with missing data[J]. Pattern Recognition, 2018, 76: 569-581. [53] HALLAC D, VARE S, BOYD S, et al. Toeplitz inverse covariance-based clustering of multivariate time series data[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 215-223. [54] MADIRAJU N S. Deep temporal clustering: fully unsupervised learning of time-domain features[D]. Tempe: Arizona State University, 2018. [55] FRANCESCHI J Y, DIEULEVEUT A, JAGGI M. Unsupervised scalable representation learning for multivariate time series[C]//Advances in Neural Information Processing Systems 32, 2019: 4650-4661. [56] HUANG H, SHAH T, YOO S. Deep time series sketching and its application on industrial time series clustering[C]//Proceedings of the 2022 IEEE International Conference on Big Data. Piscataway: IEEE, 2022: 1997-2006. [57] GUO X F, GAO L, LIU X W, et al. Improved deep embedded clustering with local structure preservation[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2017: 1753-1759. [58] SHAH S A, KOLTUN V. Deep continuous clustering[EB/OL]. [2024-01-25]. https://arxiv.org/abs/1803.01449. [59] SHAH S A, KOLTUN V. Robust continuous clustering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(37): 9814-9819. [60] MA Q, ZHENG J, LI S, et al. Learning representations for time series clustering[C]//Advances in Neural Information Processing Systems 32, 2019: 3776-3786. [61] MA Q L, CHEN C X, LI S, et al. Learning representations for incomplete time series clustering[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(10): 8837-8846. [62] IENCO D, INTERDONATO R. Deep multivariate time series embedding clustering via attentive-gated autoencoder[M]//Advances in knowledge discovery and data mining. Cham: Springer, 2020: 318-329. [63] IENCO D, INTERDONATO R. Deep semi-supervised clustering for multi-variate time-series[J]. Neurocomputing, 2023, 516: 36-47. [64] ISMAIL FAWAZ H, FORESTIER G, WEBER J, et al. Deep learning for time series classification: a review[J]. Data Mining and Knowledge Discovery, 2019, 33(4): 917-963. [65] LUBBA C H, SETHI S S, KNAUTE P, et al. catch22: canonical time-series characteristics: selected through highly comparative time-series analysis[J]. Data Mining and Knowledge Discovery, 2019, 33(6): 1821-1852. [66] ZOU Y, DONNER R V, MARWAN N, et al. Complex network approaches to nonlinear time series analysis[J]. Physics Reports, 2019, 787: 1-97. [67] WRIGHT M W, CIPOLLA R, GIBLIN P J. Skeletonization using an extended Euclidean distance transform[J]. Image and Vision Computing, 1995, 13(5): 367-375. [68] BERNDT D J, CLIFFORD J, BERNDT D J, et al. Using dynamic time warping to find patterns in time series[C]//Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining. New York: ACM, 1994: 359-370. [69] SHOKOOHI-YEKTA M, WANG J, KEOGH E. On the non-trivial generalization of dynamic time warping to the multi-dimensional case[C]//Proceedings of the 2015 SIAM International Conference on Data Mining, 2015: 289-297. [70] SHEN D S, CHI M. TC-DTW: accelerating multivariate dynamic time warping through triangle inequality and point clustering[J]. Information Sciences, 2023, 621: 611-626. [71] IRCIO J, LOJO A, MORI U, et al. Mutual information based feature subset selection in multivariate time series classification[J]. Pattern Recognition, 2020, 108: 107525. [72] GÓRECKI T, ŁUCZAK M. Multivariate time series classification with parametric derivative dynamic time warping[J]. Expert Systems with Applications, 2015, 42(5): 2305-2312. [73] LI H H, LIU J X, YANG Z L, et al. Adaptively constrained dynamic time warping for time series classification and clustering[J]. Information Sciences, 2020, 534: 97-116. [74] OKAWA M. Online signature verification using single-template matching with time-series averaging and gradient boosting[J]. Pattern Recognition, 2020, 102: 107227. [75] DVORNIK N, HADJI I, DERPANIS K G, et al. Drop-DTW: aligning common signal between sequences while dropping outliers[EB/OL]. [2024-01-25]. https://arxiv.org/abs/2108.11996. [76] VLACHOS M, KOLLIOS G, GUNOPULOS D. Discovering similar multidimensional trajectories[C]//Proceedings of the 18th International Conference on Data Engineering. Piscataway: IEEE, 2002: 673-684. [77] CHEN L, NG R, CHEN L, et al. On the marriage of Lp-norms and edit distance[C]//Proceedings of the 30th International Conference on Very Large Data Bases, 2004: 792-803. [78] CHEN L, ÖZSU M T, ORIA V, et al. Robust and fast similarity search for moving object trajectories[C]//Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2005: 491-502. [79] CHANDRA B, GUPTA M, GUPTA M P. A multivariate time series clustering approach for crime trends prediction[C]//Proceedings of the 2008 IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE, 2008: 892-896. [80] ZHAO J H, JU R S, XIE X, et al. Multivariate time series similarity measure based on weighted dynamic time warping[C]//Proceedings of the 2020 2nd International Conference on Image Processing and Machine Vision. New York: ACM, 2020: 173-179. [81] LI H L, WEI M. Fuzzy clustering based on feature weights for multivariate time series[J]. Knowledge-Based Systems, 2020, 197: 105907. [82] LI Y C, SHEN D R, NIE T Z, et al. A new shape-based clustering algorithm for time series[J]. Information Sciences, 2022, 609: 411-428. [83] TANG Y Q, XIE Y, YANG X B, et al. Tensor multi-elastic kernel self-paced learning for time series clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(3): 1223-1237. [84] HE G L, WANG H, LIU S X, et al. CSMVC: a multiview method for multivariate time-series clustering[J]. IEEE Transactions on Cybernetics, 2022, 52(12): 13425-13437. [85] ZERVEAS G, JAYARAMAN S, PATEL D, et al. A transformer-based framework for multivariate time series representation learning[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 2114-2124. [86] PAPARRIZOS J, GRAVANO L. K-shape: efficient and accurate clustering of time series[J]. ACM SIGMOD Record, 2016, 45(1): 69-76. [87] ARTHUR D, VASSILVITSKII S, ARTHUR D, et al. K-means++[C]//Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. New York: ACM, 2007: 1027-1035. [88] PARK H S, JUN C H. A simple and fast algorithm for K-medoids clustering[J]. Expert Systems with Applications, 2009, 36(2): 3336-3341. [89] DASGUPTA S, FROST N, MOSHKOVITZ M, et al. Explainable k-means and k-medians clustering[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 7055-7065. [90] HE G L, JIANG W J, PENG R, et al. Soft subspace based ensemble clustering for multivariate time series data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7761-7774. [91] MURTAGH F, CONTRERAS P. Algorithms for hierarchical clustering: an overview[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2012, 2(1): 86-97. [92] MURTAGH F. A survey of recent advances in hierarchical clustering algorithms[J]. The Computer Journal, 1983, 26(4): 354-359. [93] SAVARESI S M, BOLEY D L, BITTANTI S, et al. Cluster selection in divisive clustering algorithms[C]//Proceedings of the 2002 SIAM International Conference on Data Mining, 2002: 299-314. [94] ELHASSOUNY A. Neutrosophic logic-based DIANA clustering algorithm[J]. Neutrosophic Sets and Systems, 2023, 55(1): 30. [95] FERREIRA L N, ZHAO L. Time series clustering via community detection in networks[J]. Information Sciences, 2016, 326: 227-242. [96] WILSON S J. Data representation for time series data mining: time domain approaches[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2017, 9(1): e1392. [97] CURISKIS S A, DRAKE B, OSBORN T R, et al. An evaluation of document clustering and topic modelling in two online social networks: Twitter and Reddit[J]. Information Processing & Management, 2020, 57(2): 102034. [98] DAU H A, BAGNALL A, KAMGAR K, et al. The UCR time series archive[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6): 1293-1305. [99] BAGNALL A, DAU H A, LINES J, et al. The UEA multivariate time series classification archive, 2018[EB/OL]. [2024-01-25]. https://arxiv.org/abs/1811.00075. [100] ASUNCION A, NEWMAN D J. UCI machine learning repository[EB/OL]. [2024-01-25]. https://archive.ics.uci.edu/. [101] BAY S D, KIBLER D, PAZZANI M J, et al. The UCI KDD archive of large data sets for data mining research and experimentation[J]. ACM SIGKDD Explorations Newsletter, 2000, 2(2): 81-85. [102] WANG J, BALASUBRAMANIAN A, DE LA VEGA L M, et al. Word recognition from continuous articulatory movement time-series data using symbolic representations[C]//Proceedings of the 4th Workshop on Speech and Language Processing for Assistive Technologies, 2013: 119-127. [103] HAMMAMI N, BEDDA M. Improved tree model for Arabic speech recognition[C]//Proceedings of the 2010 3rd International Conference on Computer Science and Information Technology. Piscataway: IEEE, 2010: 521-526. [104] SHOKOOHI-YEKTA M, HU B, JIN H X, et al. Generalizing DTW to the multi-dimensional case requires an adaptive approach[J]. Data Mining and Knowledge Discovery, 2017, 31(1): 1-31. [105] WILLIAMS B H, TOUSSAINT M, STORKEY A J. Extracting motion primitives from natural handwriting data[C]//Proceedings of the 16th International Conference on Artificial Neural Networks. Berlin, Heidelberg: Springer, 2006: 634-643. [106] KELLER F, MULLER E, BOHM K. HiCS: high contrast subspaces for density-based outlier ranking[C]//Proceedings of the 2012 IEEE 28th International Conference on Data Engineering. Piscataway: IEEE, 2012: 1037-1048. [107] KADOUS M W. Temporal classification: extending the classification paradigm to multivariate time series[M]. Kensington: University of New South Wales, 2002. [108] LIU J Y, ZHONG L, WICKRAMASURIYA J, et al. uWave: accelerometer-based personalized gesture recognition and its applications[J]. Pervasive and Mobile Computing, 2009, 5(6): 657-675. [109] CAMARINHA-MATOS L M, LOPES L S, BARATA J. Integration and learning in supervision of flexible assembly systems[J]. IEEE Transactions on Robotics and Automation, 1996, 12(2): 202-219. [110] BLANKERTZ B, CURIO G, MÜLLER K R. Classifying single trial EEG: towards brain computer interfacing[C]//Advances in Neural Information Processing Systems 14. Cambridge: MIT Press, 2002: 157-164. [111] LAL T N, HINTERBERGER T, WIDMAN G, et al. Methods towards invasive human brain computer interfaces[C]//Proceedings of the 18th International Conference on Neural Information Processing Systems, 2004: 737-744. [112] BIRBAUMER N, GHANAYIM N, HINTERBERGER T, et al. A spelling device for the paralysed[J]. Nature, 1999, 398(6725): 297-298. [113] LIU C Y, SPRINGER D, LI Q, et al. An open access database for the evaluation of heart sound algorithms[J]. Physiological Measurement, 2016, 37(12): 2181-2213. |
[1] | 孟祥福, 师光启, 张霄雁, 冷强奎, 方金凤. 基于深度学习的轨迹相似性度量方法研究综述[J]. 计算机科学与探索, 2025, 19(3): 623-644. |
[2] | 邢李成, 游晓明, 刘升. 融合自适应聚类与母蚁引导策略的蚁群算法[J]. 计算机科学与探索, 2024, 18(9): 2395-2406. |
[3] | 祝义, 居程程, 郝国生. 基于PathSim的MOOCs知识概念推荐模型[J]. 计算机科学与探索, 2024, 18(8): 2049-2064. |
[4] | 韩涵, 黄训华, 常慧慧, 樊好义, 陈鹏, 陈姞伽. 心电领域中的自监督学习方法综述[J]. 计算机科学与探索, 2024, 18(7): 1683-1704. |
[5] | 张弛, 陈梅, 张锦宏. 紧凑性约束下的形状提取多元时序聚类[J]. 计算机科学与探索, 2024, 18(5): 1243-1258. |
[6] | 王威娜, 朱钰, 任艳. 融合相对密度和最近邻关系的密度峰值聚类[J]. 计算机科学与探索, 2023, 17(8): 1879-1892. |
[7] | 艾力米努尔·库尔班, 谢娟英, 姚若侠. 融合最近邻矩阵与局部密度的自适应K-means聚类算法[J]. 计算机科学与探索, 2023, 17(2): 355-366. |
[8] | 陈洁, 李帅, 赵姝, 张燕平. 不确定域特征表示的鲁棒性情感分析模型[J]. 计算机科学与探索, 2023, 17(12): 3020-3028. |
[9] | 叶廷宇, 叶军, 王晖, 王磊. 结合人工蜂群优化的粗糙K-means聚类算法[J]. 计算机科学与探索, 2022, 16(8): 1923-1932. |
[10] | 杨刚, 张宇姝, 宋震. 人体动作识别与评价——区别、联系及研究进展[J]. 计算机科学与探索, 2022, 16(5): 991-1007. |
[11] | 陈俊芬, 张明, 赵佳成, 谢博鋆, 李艳. 结合降噪和自注意力的深度聚类算法[J]. 计算机科学与探索, 2021, 15(9): 1717-1727. |
[12] | 柏锷湘, 罗可, 罗潇. 结合自然和共享最近邻的密度峰值聚类算法[J]. 计算机科学与探索, 2021, 15(5): 931-940. |
[13] | 孙冬璞, 曲丽. 时间序列特征表示与相似性度量研究综述[J]. 计算机科学与探索, 2021, 15(2): 195-205. |
[14] | 范虹,史肖敏,姚若侠. 头脑风暴算法优化的乳腺MR图像软子空间聚类算法[J]. 计算机科学与探索, 2020, 14(8): 1348-1357. |
[15] | 罗浩,王彦捷,牛明航,邱存月,张利. 动态区间的加权模糊聚类算法[J]. 计算机科学与探索, 2020, 14(7): 1142-1153. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 113
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 131
|
|
|||||||||||||||||||||||||||||||||||||||||||||