计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (2): 236-243.DOI: 10.3778/j.issn.1673-9418.1903067
倪鹏,刘阳明,赵素云,陈红,李翠平
NI Peng, LIU Yangming, ZHAO Suyun, CHEN Hong, LI Cuiping
摘要:
由于数据随时间和空间不断更新,很多基于粗糙集的增量方法被提出。然而,动态数据上基于模糊粗糙集的特征选取(也称属性约简)更新的研究较少,特别是连续型动态数据上的增量特征选取。为了解决这个问题,提出适用于连续型数据的基于模糊粗糙集的增量属性约简算法。首先提出模糊粗糙基本概念的增量机制,如模糊正域的增量机制。只有部分示例在已有属性约简上的辨识能力不足,即对于模糊正域来说,存在一个关键示例集。增量约简算法基于已有数据上的约简结果,仅需要更新关键示例集中的示例,而非全部的论域。因而该增量算法在动态数据上能快速获得约简的更新。通过数值对比实验可以看出,增量算法比非增量算法在运行时间上有明显的优势。特别是对于高维数据集,增量算法可以大大地节省计算时间。