[1] Ding C H Q, He X F. Cluster structure of K-means clustering via principal component analysis[C]//LNCS 3056: Proceedings of the 8th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Sydney, May 26-28, 2004. Berlin, Heidelberg: Springer, 2004: 414-418.
[2] Johnson S C. Hierarchical clustering schemes[J]. Psycho-metrika, 1967, 32(3): 241-254.
[3] Yu X F, Ge H W. Potential clustering by automatic determi-nation of cluster centers[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(6): 1004-1012.于晓飞, 葛洪伟. 自动确定聚类中心的势能聚类算法[J]. 计算机科学与探索, 2018, 12(6): 1004-1012.
[4] Luxburg U V. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 14(4): 395-416.
[5] Xiao W Q, Yao S J, Wu S M. Top-N collaborative filtering recommendation algorithm based on user spectrum clus-tering[J]. Computer Engineering and Applications, 2018, 54(7): 138-143.肖文强, 姚世军, 吴善明. 基于用户谱聚类的Top-N协同过滤推荐算法[J]. 计算机工程与应用, 2018, 54(7): 138-143.
[6] Guo W T, Xia L M. Human activity recognition based on multi-view nonnegative matrix factorization[J]. Computer Engi-neering and Applications, 2018, 54(16): 37-43.郭炜婷, 夏利民. 基于多视角非负矩阵分解的人体行为识别[J]. 计算机工程与应用, 2018, 54(16): 37-43.
[7] Cai X, Nie F P, Huang H. Multi-view K-means clustering on big data[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, Aug 3-9, 2013. Menlo Park: AAAI, 2013: 2598-2604.
[8] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791.
[9] Li T, Ding C H Q. The relationships among various nonne-gative matrix factorization methods for clustering[C]//Pro-ceedings of the 6th IEEE International Conference on Data Mining, Hong Kong, China, Dec 18-22, 2006. Washington: IEEE Computer Society, 2007: 362-371.
[10] Ding C H Q, Li T, Jordan M I. Convex and semi-nonnegative matrix factorizations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 45-55.
[11] Huang S D, Xu Z L, Wang F. Nonnegative matrix factoriza-tion with adaptive neighbors[C]//Proceedings of the 17th IEEE International Joint Conference on Neural Networks, Anchorage, May 14-19, 2017. Washington: IEEE Computer Society, 2017: 486-493.
[12] Kong D G, Ding C H Q, Huang H. Robust nonnegative matrix factorization using L21-norm[C]//Proceedings of the 20th ACM International Conference on Information and Know-ledge Management, Glasgow, Oct 24-28, 2011. New York: ACM, 2011: 673-682.
[13] Cai D, He X F, Wu X Y, et al. Non-negative matrix factori-zation on manifold[C]//Proceedings of the 8th IEEE Inter-national Conference on Data Mining, Pisa, Dec 15-19, 2008. Washington: IEEE Computer Society, 2008: 63-72.
[14] Cai D, He X F, Han J W, et al. Graph regularized non-negative matrix factorization for data representation[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1548-1560.
[15] Huang J, Nie F P, Huang H, et al. Robust manifold nonne-gative matrix factorization[J]. ACM Transactions on Know-ledge Discovery from Data, 2014, 8(3): 1-21.
[16] Chapelle O, Schlkopf B, Zien A. Semi-supervised learning[J]. IEEE Transactions on Neural Networks, 2009, 20(3): 542.
[17] Qian P J, Jiang Y Z, Wang S T, et al. Affinity and penalty jointly constrained spectral clustering with all-compatibility, flexibility, and robustness[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(5): 1123-1138.
[18] Qian P J, Xi C, Xu M, et al. SSC-EKE: semi-supervised classification with extensive knowledge exploitation[J]. Infor-mation Sciences, 2018, 422: 51-76.
[19] Belkin M, Niyogi P, Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples[J]. Journal of Machine Learning Research, 2006, 7(1): 2399-2434.
[20] Wang S, Siskind J M. Image segmentation with ratio cut[J]. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 2003, 25(6): 675-690.
[21] Shi J B, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 2000, 22(8): 888-905.
[22] Parlett B N. The rayleigh quotient iteration and some genera-lizations for nonnormal matrices[J]. Mathematics of Com-putation, 1974, 28(127): 679-693.
[23] Liu S T, Luo X L. A method based on Rayleigh quotient gradient flow for extreme and interior eigenvalue problems[J]. Linear Algebra & Its Applications, 2010, 432(7): 1851-1863.
[24] Yuan M, Lin Y. Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society, 2006, 68(1): 49-67.
[25] Allab K, Labiod L, Nadif M. Simultaneous spectral data embedding and clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12): 6396-6401.
[26] Lin Z, Chen M, Ma Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. arXiv:1009.5055, 2010.
[27] Jing L P, Ng M K, Huang J Z. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(8): 1026-1041.
[28] Liu J, Mohammed J, Carter J, et al. Distance-based clustering of CGH data[J]. Bioinformatics, 2006, 22(16): 1971-1978. |