计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (10): 2320-2329.DOI: 10.3778/j.issn.1673-9418.2101075
收稿日期:
2021-01-21
修回日期:
2021-03-16
出版日期:
2022-10-01
发布日期:
2021-03-23
通讯作者:
+ E-mail: 6191610014@jiangnan.edu.cn作者简介:
吴天宇(1995—),男,甘肃酒泉人,硕士研究生,主要研究方向为人工智能、模式识别。基金资助:
Received:
2021-01-21
Revised:
2021-03-16
Online:
2022-10-01
Published:
2021-03-23
About author:
WU Tianyu, born in 1995, M.S. candidate. His research interests include artificial intelligence and pattern recognition.Supported by:
摘要:
现实情况中通常会针对同一对象从不同途径或层面获得特征数据,称这样获得的数据为多视角数据。对于多视角数据的挖掘利用具有研究价值,与传统的单视角学习相比表现出一定优势。多视角学习(MVL)中一个重要的问题是如何在满足视角间互补情况下同时保持视角之间一致性。为解决上述问题,基于多视角学习和特权信息学习(LUPI)概念,以随机向量函数连接网络(RVFL)为基础,提出了一种快速多视角特权协同随机向量函数连接网络(FMPRVFL)来有效地解决多视角分类任务。该方法的基本思想是在平均情况下相互利用冗余视角的附加信息作为特权信息监督当前视角的分类。在此基础上设计的FMPRVFL的目标函数可以利用解析解对目标函数进行优化,从而使FMPRVFL训练速度更快。理论分析表明,与经典的多视角学习方法相比,FMPRVFL可以提供额外的泛化能力。在64个数据集上的实验结果表明,FMPRVFL在平均测试精度和运行时间上都优于比较方法。
中图分类号:
吴天宇, 王士同. 快速多视角特权协同随机向量函数连接网络[J]. 计算机科学与探索, 2022, 16(10): 2320-2329.
WU Tianyu, WANG Shitong. Fast Multi-view Privileged Random Vector Function Link Network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2320-2329.
数据集 | 数量 | 类别数 | 特征A | 特征B |
---|---|---|---|---|
AwA | 6 180 | 8 | 2 000(SURF) | 252(HOG) |
NUS-WIDE | 6 265 | 7 | 225(CM55) | 73(EDH) |
表1 实验中用到的数据集
Table 1 Datasets used in experiment
数据集 | 数量 | 类别数 | 特征A | 特征B |
---|---|---|---|---|
AwA | 6 180 | 8 | 2 000(SURF) | 252(HOG) |
NUS-WIDE | 6 265 | 7 | 225(CM55) | 73(EDH) |
No. | Dataset A | Dataset B | FMPRVFL | RVFL-A | RVFL-B | SVM-2K | MED-2C | PSVM-2V | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | |||
1 | chimps | panda | 90.02 | 0.008 | 87.14 | 0.027 | 74.61 | 0.021 | 86.76 | 0.028 | 86.93 | 0.027 | 90.92 | 0.023 |
2 | chimps | leopard | 90.72 | 0.024 | 86.84 | 0.018 | 71.50 | 0.037 | 85.73 | 0.034 | 82.80 | 0.040 | 87.61 | 0.043 |
3 | chimps | cat | 89.24 | 0.008 | 86.65 | 0.034 | 75.08 | 0.035 | 84.31 | 0.010 | 82.07 | 0.049 | 86.52 | 0.067 |
4 | chimps | pig | 85.13 | 0.004 | 82.09 | 0.050 | 73.56 | 0.036 | 81.88 | 0.006 | 82.86 | 0.033 | 83.81 | 0.056 |
5 | chimps | hippo | 87.34 | 0.017 | 86.84 | 0.022 | 71.50 | 0.037 | 85.59 | 0.021 | 82.82 | 0.043 | 84.45 | 0.063 |
6 | chimps | raccoon | 85.61 | 0.007 | 83.02 | 0.020 | 71.65 | 0.050 | 82.23 | 0.026 | 79.75 | 0.062 | 83.83 | 0.071 |
7 | chimps | rat | 86.15 | 0.021 | 82.36 | 0.041 | 74.24 | 0.031 | 82.24 | 0.108 | 75.12 | 0.035 | 81.16 | 0.082 |
8 | chimps | seal | 88.04 | 0.027 | 81.46 | 0.035 | 76.79 | 0.021 | 88.43 | 0.104 | 83.07 | 0.026 | 87.76 | 0.016 |
9 | panda | leopard | 91.49 | 0.009 | 88.84 | 0.014 | 69.05 | 0.042 | 88.95 | 0.019 | 84.31 | 0.026 | 90.46 | 0.012 |
10 | panda | cat | 92.31 | 0.004 | 90.04 | 0.026 | 78.33 | 0.021 | 89.63 | 0.027 | 88.03 | 0.020 | 89.53 | 0.067 |
11 | panda | pig | 87.09 | 0.020 | 83.62 | 0.025 | 76.02 | 0.027 | 84.08 | 0.020 | 78.83 | 0.042 | 83.46 | 0.035 |
12 | panda | hippo | 90.42 | 0.018 | 87.69 | 0.018 | 79.46 | 0.025 | 88.48 | 0.017 | 87.47 | 0.009 | 91.13 | 0.050 |
13 | panda | raccoon | 90.44 | 0.027 | 86.90 | 0.030 | 69.97 | 0.039 | 89.56 | 0.027 | 88.94 | 0.024 | 90.85 | 0.037 |
14 | panda | rat | 88.12 | 0.028 | 85.92 | 0.043 | 81.33 | 0.025 | 82.76 | 0.024 | 82.25 | 0.025 | 86.57 | 0.064 |
15 | panda | seal | 90.13 | 0.025 | 89.10 | 0.017 | 83.17 | 0.037 | 88.06 | 0.033 | 86.89 | 0.033 | 89.63 | 0.026 |
16 | leopard | cat | 90.80 | 0.017 | 86.94 | 0.021 | 84.37 | 0.028 | 86.84 | 0.026 | 86.15 | 0.033 | 90.69 | 0.045 |
17 | leopard | pig | 83.05 | 0.022 | 82.62 | 0.028 | 73.41 | 0.064 | 82.19 | 0.037 | 78.53 | 0.027 | 84.11 | 0.057 |
18 | leopard | hippo | 87.60 | 0.017 | 83.10 | 0.028 | 75.26 | 0.038 | 86.06 | 0.036 | 82.54 | 0.037 | 88.49 | 0.092 |
19 | leopard | raccoon | 82.79 | 0.014 | 78.25 | 0.032 | 61.44 | 0.030 | 77.19 | 0.042 | 74.54 | 0.041 | 81.21 | 0.074 |
20 | leopard | rat | 86.15 | 0.029 | 84.53 | 0.033 | 73.12 | 0.070 | 82.93 | 0.052 | 80.17 | 0.040 | 85.21 | 0.082 |
21 | leopard | seal | 90.63 | 0.006 | 86.47 | 0.027 | 78.75 | 0.028 | 88.01 | 0.033 | 87.83 | 0.045 | 88.00 | 0.091 |
22 | cat | pig | 81.75 | 0.035 | 79.27 | 0.044 | 75.20 | 0.047 | 75.68 | 0.016 | 73.92 | 0.061 | 76.80 | 0.055 |
23 | cat | hippo | 88.26 | 0.015 | 87.08 | 0.029 | 75.63 | 0.037 | 85.37 | 0.024 | 85.07 | 0.037 | 86.29 | 0.074 |
24 | cat | raccoon | 87.14 | 0.014 | 84.76 | 0.021 | 65.44 | 0.023 | 88.58 | 0.029 | 85.06 | 0.022 | 89.85 | 0.043 |
25 | cat | rat | 75.26 | 0.032 | 74.17 | 0.040 | 69.12 | 0.023 | 68.42 | 0.027 | 62.40 | 0.025 | 68.46 | 0.043 |
26 | cat | seal | 84.85 | 0.032 | 76.55 | 0.044 | 71.32 | 0.048 | 82.10 | 0.023 | 82.60 | 0.038 | 83.68 | 0.060 |
27 | pig | hippo | 78.94 | 0.050 | 77.21 | 0.055 | 71.49 | 0.045 | 73.79 | 0.023 | 71.42 | 0.037 | 74.49 | 0.066 |
28 | pig | raccoon | 81.97 | 0.018 | 78.30 | 0.034 | 69.47 | 0.059 | 81.09 | 0.038 | 76.75 | 0.016 | 79.46 | 0.065 |
29 | pig | rat | 73.18 | 0.029 | 69.21 | 0.032 | 60.43 | 0.069 | 71.43 | 0.143 | 70.52 | 0.025 | 74.31 | 0.080 |
30 | pig | seal | 80.43 | 0.045 | 78.27 | 0.045 | 75.71 | 0.023 | 77.02 | 0.020 | 71.86 | 0.037 | 77.08 | 0.092 |
31 | hippo | raccoon | 85.40 | 0.013 | 83.49 | 0.030 | 75.52 | 0.038 | 82.60 | 0.032 | 80.54 | 0.045 | 83.53 | 0.036 |
32 | hippo | rat | 84.81 | 0.011 | 82.92 | 0.019 | 76.67 | 0.021 | 76.07 | 0.018 | 72.94 | 0.035 | 75.23 | 0.056 |
33 | hippo | seal | 71.93 | 0.034 | 70.45 | 0.034 | 68.26 | 0.015 | 64.46 | 0.014 | 67.08 | 0.030 | 69.48 | 0.053 |
34 | raccoon | rat | 79.88 | 0.027 | 78.45 | 0.039 | 69.55 | 0.017 | 75.23 | 0.038 | 74.14 | 0.026 | 78.76 | 0.024 |
35 | raccoon | seal | 89.49 | 0.012 | 85.11 | 0.019 | 77.83 | 0.031 | 87.30 | 0.043 | 84.08 | 0.040 | 90.72 | 0.019 |
36 | rat | seal | 80.59 | 0.036 | 77.32 | 0.042 | 72.02 | 0.042 | 73.81 | 0.018 | 71.96 | 0.020 | 75.69 | 0.017 |
Average | 85.48 | 0.021 | 82.58 | 0.031 | 73.51 | 0.036 | 82.08 | 0.034 | 79.78 | 0.034 | 83.59 | 0.054 |
表2 在AWA数据集上的分类性能
Table 2 Classification performance on AwA dataset
No. | Dataset A | Dataset B | FMPRVFL | RVFL-A | RVFL-B | SVM-2K | MED-2C | PSVM-2V | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | |||
1 | chimps | panda | 90.02 | 0.008 | 87.14 | 0.027 | 74.61 | 0.021 | 86.76 | 0.028 | 86.93 | 0.027 | 90.92 | 0.023 |
2 | chimps | leopard | 90.72 | 0.024 | 86.84 | 0.018 | 71.50 | 0.037 | 85.73 | 0.034 | 82.80 | 0.040 | 87.61 | 0.043 |
3 | chimps | cat | 89.24 | 0.008 | 86.65 | 0.034 | 75.08 | 0.035 | 84.31 | 0.010 | 82.07 | 0.049 | 86.52 | 0.067 |
4 | chimps | pig | 85.13 | 0.004 | 82.09 | 0.050 | 73.56 | 0.036 | 81.88 | 0.006 | 82.86 | 0.033 | 83.81 | 0.056 |
5 | chimps | hippo | 87.34 | 0.017 | 86.84 | 0.022 | 71.50 | 0.037 | 85.59 | 0.021 | 82.82 | 0.043 | 84.45 | 0.063 |
6 | chimps | raccoon | 85.61 | 0.007 | 83.02 | 0.020 | 71.65 | 0.050 | 82.23 | 0.026 | 79.75 | 0.062 | 83.83 | 0.071 |
7 | chimps | rat | 86.15 | 0.021 | 82.36 | 0.041 | 74.24 | 0.031 | 82.24 | 0.108 | 75.12 | 0.035 | 81.16 | 0.082 |
8 | chimps | seal | 88.04 | 0.027 | 81.46 | 0.035 | 76.79 | 0.021 | 88.43 | 0.104 | 83.07 | 0.026 | 87.76 | 0.016 |
9 | panda | leopard | 91.49 | 0.009 | 88.84 | 0.014 | 69.05 | 0.042 | 88.95 | 0.019 | 84.31 | 0.026 | 90.46 | 0.012 |
10 | panda | cat | 92.31 | 0.004 | 90.04 | 0.026 | 78.33 | 0.021 | 89.63 | 0.027 | 88.03 | 0.020 | 89.53 | 0.067 |
11 | panda | pig | 87.09 | 0.020 | 83.62 | 0.025 | 76.02 | 0.027 | 84.08 | 0.020 | 78.83 | 0.042 | 83.46 | 0.035 |
12 | panda | hippo | 90.42 | 0.018 | 87.69 | 0.018 | 79.46 | 0.025 | 88.48 | 0.017 | 87.47 | 0.009 | 91.13 | 0.050 |
13 | panda | raccoon | 90.44 | 0.027 | 86.90 | 0.030 | 69.97 | 0.039 | 89.56 | 0.027 | 88.94 | 0.024 | 90.85 | 0.037 |
14 | panda | rat | 88.12 | 0.028 | 85.92 | 0.043 | 81.33 | 0.025 | 82.76 | 0.024 | 82.25 | 0.025 | 86.57 | 0.064 |
15 | panda | seal | 90.13 | 0.025 | 89.10 | 0.017 | 83.17 | 0.037 | 88.06 | 0.033 | 86.89 | 0.033 | 89.63 | 0.026 |
16 | leopard | cat | 90.80 | 0.017 | 86.94 | 0.021 | 84.37 | 0.028 | 86.84 | 0.026 | 86.15 | 0.033 | 90.69 | 0.045 |
17 | leopard | pig | 83.05 | 0.022 | 82.62 | 0.028 | 73.41 | 0.064 | 82.19 | 0.037 | 78.53 | 0.027 | 84.11 | 0.057 |
18 | leopard | hippo | 87.60 | 0.017 | 83.10 | 0.028 | 75.26 | 0.038 | 86.06 | 0.036 | 82.54 | 0.037 | 88.49 | 0.092 |
19 | leopard | raccoon | 82.79 | 0.014 | 78.25 | 0.032 | 61.44 | 0.030 | 77.19 | 0.042 | 74.54 | 0.041 | 81.21 | 0.074 |
20 | leopard | rat | 86.15 | 0.029 | 84.53 | 0.033 | 73.12 | 0.070 | 82.93 | 0.052 | 80.17 | 0.040 | 85.21 | 0.082 |
21 | leopard | seal | 90.63 | 0.006 | 86.47 | 0.027 | 78.75 | 0.028 | 88.01 | 0.033 | 87.83 | 0.045 | 88.00 | 0.091 |
22 | cat | pig | 81.75 | 0.035 | 79.27 | 0.044 | 75.20 | 0.047 | 75.68 | 0.016 | 73.92 | 0.061 | 76.80 | 0.055 |
23 | cat | hippo | 88.26 | 0.015 | 87.08 | 0.029 | 75.63 | 0.037 | 85.37 | 0.024 | 85.07 | 0.037 | 86.29 | 0.074 |
24 | cat | raccoon | 87.14 | 0.014 | 84.76 | 0.021 | 65.44 | 0.023 | 88.58 | 0.029 | 85.06 | 0.022 | 89.85 | 0.043 |
25 | cat | rat | 75.26 | 0.032 | 74.17 | 0.040 | 69.12 | 0.023 | 68.42 | 0.027 | 62.40 | 0.025 | 68.46 | 0.043 |
26 | cat | seal | 84.85 | 0.032 | 76.55 | 0.044 | 71.32 | 0.048 | 82.10 | 0.023 | 82.60 | 0.038 | 83.68 | 0.060 |
27 | pig | hippo | 78.94 | 0.050 | 77.21 | 0.055 | 71.49 | 0.045 | 73.79 | 0.023 | 71.42 | 0.037 | 74.49 | 0.066 |
28 | pig | raccoon | 81.97 | 0.018 | 78.30 | 0.034 | 69.47 | 0.059 | 81.09 | 0.038 | 76.75 | 0.016 | 79.46 | 0.065 |
29 | pig | rat | 73.18 | 0.029 | 69.21 | 0.032 | 60.43 | 0.069 | 71.43 | 0.143 | 70.52 | 0.025 | 74.31 | 0.080 |
30 | pig | seal | 80.43 | 0.045 | 78.27 | 0.045 | 75.71 | 0.023 | 77.02 | 0.020 | 71.86 | 0.037 | 77.08 | 0.092 |
31 | hippo | raccoon | 85.40 | 0.013 | 83.49 | 0.030 | 75.52 | 0.038 | 82.60 | 0.032 | 80.54 | 0.045 | 83.53 | 0.036 |
32 | hippo | rat | 84.81 | 0.011 | 82.92 | 0.019 | 76.67 | 0.021 | 76.07 | 0.018 | 72.94 | 0.035 | 75.23 | 0.056 |
33 | hippo | seal | 71.93 | 0.034 | 70.45 | 0.034 | 68.26 | 0.015 | 64.46 | 0.014 | 67.08 | 0.030 | 69.48 | 0.053 |
34 | raccoon | rat | 79.88 | 0.027 | 78.45 | 0.039 | 69.55 | 0.017 | 75.23 | 0.038 | 74.14 | 0.026 | 78.76 | 0.024 |
35 | raccoon | seal | 89.49 | 0.012 | 85.11 | 0.019 | 77.83 | 0.031 | 87.30 | 0.043 | 84.08 | 0.040 | 90.72 | 0.019 |
36 | rat | seal | 80.59 | 0.036 | 77.32 | 0.042 | 72.02 | 0.042 | 73.81 | 0.018 | 71.96 | 0.020 | 75.69 | 0.017 |
Average | 85.48 | 0.021 | 82.58 | 0.031 | 73.51 | 0.036 | 82.08 | 0.034 | 79.78 | 0.034 | 83.59 | 0.054 |
No. | Dataset A | Dataset B | FMPRVFL | RVFL-A | RVFL-B | SVM-2K | MED-2C | PSVM-2V | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | |||
1 | birds | computer | 83.70 | 0.018 | 81.50 | 0.017 | 81.83 | 0.024 | 81.30 | 0.021 | 75.10 | 0.033 | 79.41 | 0.020 |
2 | birds | flowers | 82.34 | 0.012 | 74.74 | 0.014 | 79.81 | 0.012 | 81.48 | 0.017 | 81.12 | 0.026 | 82.27 | 0.016 |
3 | birds | lake | 75.63 | 0.011 | 74.67 | 0.014 | 70.60 | 0.023 | 68.00 | 0.014 | 68.08 | 0.037 | 72.43 | 0.012 |
4 | birds | plants | 78.04 | 0.017 | 70.56 | 0.022 | 77.53 | 0.014 | 78.95 | 0.010 | 74.56 | 0.036 | 79.76 | 0.016 |
5 | birds | sign | 77.19 | 0.029 | 75.83 | 0.027 | 69.74 | 0.035 | 67.13 | 0.009 | 67.59 | 0.042 | 71.66 | 0.026 |
6 | birds | swimmers | 90.05 | 0.013 | 86.39 | 0.008 | 85.66 | 0.011 | 87.58 | 0.030 | 86.83 | 0.042 | 88.56 | 0.028 |
7 | birds | vehicle | 83.96 | 0.018 | 82.56 | 0.006 | 80.56 | 0.015 | 81.83 | 0.021 | 89.74 | 0.052 | 83.17 | 0.026 |
8 | computer | flowers | 91.19 | 0.012 | 90.71 | 0.009 | 91.04 | 0.005 | 90.09 | 0.009 | 89.74 | 0.074 | 90.57 | 0.008 |
9 | computer | lake | 78.41 | 0.022 | 76.99 | 0.016 | 70.20 | 0.025 | 75.46 | 0.020 | 71.74 | 0.035 | 75.95 | 0.039 |
10 | computer | plants | 79.64 | 0.036 | 75.95 | 0.026 | 77.36 | 0.019 | 76.98 | 0.032 | 78.29 | 0.011 | 78.62 | 0.016 |
11 | computer | sign | 76.48 | 0.027 | 73.72 | 0.020 | 72.13 | 0.024 | 75.04 | 0.037 | 73.86 | 0.010 | 75.38 | 0.026 |
12 | computer | swimmers | 78.68 | 0.033 | 75.53 | 0.025 | 72.62 | 0.074 | 75.04 | 0.037 | 76.77 | 0.008 | 79.60 | 0.034 |
13 | computer | vehicle | 74.14 | 0.033 | 73.53 | 0.025 | 72.62 | 0.074 | 66.46 | 0.031 | 60.39 | 0.010 | 69.06 | 0.037 |
14 | flowers | lake | 85.75 | 0.004 | 84.47 | 0.006 | 83.29 | 0.008 | 83.87 | 0.008 | 83.72 | 0.008 | 84.12 | 0.013 |
15 | flowers | plants | 84.07 | 0.019 | 82.07 | 0.019 | 81.10 | 0.019 | 83.23 | 0.022 | 83.08 | 0.034 | 83.18 | 0.010 |
16 | flowers | sign | 85.07 | 0.008 | 81.83 | 0.020 | 76.95 | 0.013 | 77.39 | 0.014 | 77.67 | 0.011 | 83.18 | 0.010 |
17 | flowers | swimmers | 94.93 | 0.004 | 93.58 | 0.008 | 93.52 | 0.010 | 93.51 | 0.011 | 93.91 | 0.017 | 94.43 | 0.008 |
18 | flowers | vehicle | 92.29 | 0.010 | 89.74 | 0.010 | 89.74 | 0.010 | 91.50 | 0.006 | 90.19 | 0.019 | 91.32 | 0.011 |
19 | lake | plants | 80.62 | 0.019 | 78.21 | 0.015 | 77.89 | 0.018 | 79.33 | 0.026 | 79.26 | 0.021 | 79.74 | 0.029 |
20 | lake | sign | 77.08 | 0.011 | 75.78 | 0.008 | 67.95 | 0.027 | 71.35 | 0.017 | 68.84 | 0.026 | 72.33 | 0.017 |
21 | lake | swimmers | 84.00 | 0.035 | 82.57 | 0.027 | 80.36 | 0.031 | 80.52 | 0.019 | 81.91 | 0.018 | 84.16 | 0.011 |
22 | lake | vehicle | 79.96 | 0.035 | 77.43 | 0.035 | 78.46 | 0.031 | 79.67 | 0.021 | 76.46 | 0.009 | 81.51 | 0.034 |
23 | plants | sign | 78.89 | 0.022 | 77.60 | 0.018 | 73.93 | 0.029 | 78.23 | 0.026 | 78.88 | 0.036 | 76.71 | 0.018 |
24 | plants | swimmers | 83.81 | 0.032 | 80.03 | 0.038 | 79.14 | 0.044 | 81.68 | 0.037 | 82.40 | 0.009 | 84.07 | 0.009 |
25 | plants | vehicle | 81.61 | 0.026 | 80.75 | 0.016 | 80.49 | 0.026 | 81.73 | 0.041 | 79.54 | 0.014 | 80.56 | 0.036 |
26 | sign | swimmers | 87.39 | 0.027 | 85.11 | 0.014 | 84.34 | 0.012 | 86.47 | 0.028 | 84.74 | 0.036 | 85.70 | 0.021 |
27 | sign | swimmers | 81.00 | 0.014 | 80.21 | 0.019 | 77.31 | 0.029 | 77.47 | 0.007 | 76.16 | 0.027 | 78.08 | 0.014 |
28 | swimmers | vehicle | 80.30 | 0.032 | 75.50 | 0.018 | 74.05 | 0.013 | 76.99 | 0.045 | 74.05 | 0.016 | 78.08 | 0.014 |
Average | 82.37 | 0.021 | 79.91 | 0.018 | 78.58 | 0.024 | 79.58 | 0.022 | 78.74 | 0.026 | 80.84 | 0.020 |
表3 在NUS-WIDE数据集上的分类性能
Table 3 Classification performance on NUS-WIDE dataset
No. | Dataset A | Dataset B | FMPRVFL | RVFL-A | RVFL-B | SVM-2K | MED-2C | PSVM-2V | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | Acc/% | STD | |||
1 | birds | computer | 83.70 | 0.018 | 81.50 | 0.017 | 81.83 | 0.024 | 81.30 | 0.021 | 75.10 | 0.033 | 79.41 | 0.020 |
2 | birds | flowers | 82.34 | 0.012 | 74.74 | 0.014 | 79.81 | 0.012 | 81.48 | 0.017 | 81.12 | 0.026 | 82.27 | 0.016 |
3 | birds | lake | 75.63 | 0.011 | 74.67 | 0.014 | 70.60 | 0.023 | 68.00 | 0.014 | 68.08 | 0.037 | 72.43 | 0.012 |
4 | birds | plants | 78.04 | 0.017 | 70.56 | 0.022 | 77.53 | 0.014 | 78.95 | 0.010 | 74.56 | 0.036 | 79.76 | 0.016 |
5 | birds | sign | 77.19 | 0.029 | 75.83 | 0.027 | 69.74 | 0.035 | 67.13 | 0.009 | 67.59 | 0.042 | 71.66 | 0.026 |
6 | birds | swimmers | 90.05 | 0.013 | 86.39 | 0.008 | 85.66 | 0.011 | 87.58 | 0.030 | 86.83 | 0.042 | 88.56 | 0.028 |
7 | birds | vehicle | 83.96 | 0.018 | 82.56 | 0.006 | 80.56 | 0.015 | 81.83 | 0.021 | 89.74 | 0.052 | 83.17 | 0.026 |
8 | computer | flowers | 91.19 | 0.012 | 90.71 | 0.009 | 91.04 | 0.005 | 90.09 | 0.009 | 89.74 | 0.074 | 90.57 | 0.008 |
9 | computer | lake | 78.41 | 0.022 | 76.99 | 0.016 | 70.20 | 0.025 | 75.46 | 0.020 | 71.74 | 0.035 | 75.95 | 0.039 |
10 | computer | plants | 79.64 | 0.036 | 75.95 | 0.026 | 77.36 | 0.019 | 76.98 | 0.032 | 78.29 | 0.011 | 78.62 | 0.016 |
11 | computer | sign | 76.48 | 0.027 | 73.72 | 0.020 | 72.13 | 0.024 | 75.04 | 0.037 | 73.86 | 0.010 | 75.38 | 0.026 |
12 | computer | swimmers | 78.68 | 0.033 | 75.53 | 0.025 | 72.62 | 0.074 | 75.04 | 0.037 | 76.77 | 0.008 | 79.60 | 0.034 |
13 | computer | vehicle | 74.14 | 0.033 | 73.53 | 0.025 | 72.62 | 0.074 | 66.46 | 0.031 | 60.39 | 0.010 | 69.06 | 0.037 |
14 | flowers | lake | 85.75 | 0.004 | 84.47 | 0.006 | 83.29 | 0.008 | 83.87 | 0.008 | 83.72 | 0.008 | 84.12 | 0.013 |
15 | flowers | plants | 84.07 | 0.019 | 82.07 | 0.019 | 81.10 | 0.019 | 83.23 | 0.022 | 83.08 | 0.034 | 83.18 | 0.010 |
16 | flowers | sign | 85.07 | 0.008 | 81.83 | 0.020 | 76.95 | 0.013 | 77.39 | 0.014 | 77.67 | 0.011 | 83.18 | 0.010 |
17 | flowers | swimmers | 94.93 | 0.004 | 93.58 | 0.008 | 93.52 | 0.010 | 93.51 | 0.011 | 93.91 | 0.017 | 94.43 | 0.008 |
18 | flowers | vehicle | 92.29 | 0.010 | 89.74 | 0.010 | 89.74 | 0.010 | 91.50 | 0.006 | 90.19 | 0.019 | 91.32 | 0.011 |
19 | lake | plants | 80.62 | 0.019 | 78.21 | 0.015 | 77.89 | 0.018 | 79.33 | 0.026 | 79.26 | 0.021 | 79.74 | 0.029 |
20 | lake | sign | 77.08 | 0.011 | 75.78 | 0.008 | 67.95 | 0.027 | 71.35 | 0.017 | 68.84 | 0.026 | 72.33 | 0.017 |
21 | lake | swimmers | 84.00 | 0.035 | 82.57 | 0.027 | 80.36 | 0.031 | 80.52 | 0.019 | 81.91 | 0.018 | 84.16 | 0.011 |
22 | lake | vehicle | 79.96 | 0.035 | 77.43 | 0.035 | 78.46 | 0.031 | 79.67 | 0.021 | 76.46 | 0.009 | 81.51 | 0.034 |
23 | plants | sign | 78.89 | 0.022 | 77.60 | 0.018 | 73.93 | 0.029 | 78.23 | 0.026 | 78.88 | 0.036 | 76.71 | 0.018 |
24 | plants | swimmers | 83.81 | 0.032 | 80.03 | 0.038 | 79.14 | 0.044 | 81.68 | 0.037 | 82.40 | 0.009 | 84.07 | 0.009 |
25 | plants | vehicle | 81.61 | 0.026 | 80.75 | 0.016 | 80.49 | 0.026 | 81.73 | 0.041 | 79.54 | 0.014 | 80.56 | 0.036 |
26 | sign | swimmers | 87.39 | 0.027 | 85.11 | 0.014 | 84.34 | 0.012 | 86.47 | 0.028 | 84.74 | 0.036 | 85.70 | 0.021 |
27 | sign | swimmers | 81.00 | 0.014 | 80.21 | 0.019 | 77.31 | 0.029 | 77.47 | 0.007 | 76.16 | 0.027 | 78.08 | 0.014 |
28 | swimmers | vehicle | 80.30 | 0.032 | 75.50 | 0.018 | 74.05 | 0.013 | 76.99 | 0.045 | 74.05 | 0.016 | 78.08 | 0.014 |
Average | 82.37 | 0.021 | 79.91 | 0.018 | 78.58 | 0.024 | 79.58 | 0.022 | 78.74 | 0.026 | 80.84 | 0.020 |
Dataset A | Dataset B | FMPRVFL | SVM-2K | MED-2C | PSVM-2V |
---|---|---|---|---|---|
computer | flowers | 0.011 | 3.261 | 134.865 | 852.122 |
computer | lake | 0.011 | 2.961 | 128.331 | 931.132 |
computer | plants | 0.014 | 4.161 | 151.412 | 762.312 |
computer | sign | 0.013 | 3.754 | 132.445 | 752.112 |
computer | swimmers | 0.029 | 4.186 | 179.323 | 834.873 |
computer | vehicle | 0.032 | 3.155 | 64.844 | 452.913 |
Average | 0.111 | 3.580 | 131.870 | 764.211 |
表4 在NUS-WIDE数据集上的平均运行时间 单位:s
Table 4 Average running time on NUS-WIDE dataset
Dataset A | Dataset B | FMPRVFL | SVM-2K | MED-2C | PSVM-2V |
---|---|---|---|---|---|
computer | flowers | 0.011 | 3.261 | 134.865 | 852.122 |
computer | lake | 0.011 | 2.961 | 128.331 | 931.132 |
computer | plants | 0.014 | 4.161 | 151.412 | 762.312 |
computer | sign | 0.013 | 3.754 | 132.445 | 752.112 |
computer | swimmers | 0.029 | 4.186 | 179.323 | 834.873 |
computer | vehicle | 0.032 | 3.155 | 64.844 | 452.913 |
Average | 0.111 | 3.580 | 131.870 | 764.211 |
[1] |
PAOY H, PARK G H, SOBAJIC D J. Learning and general-ization characteristics of the random vector functional-link net[J]. Neurocomputing, 1994, 6(2): 163-180.
DOI URL |
[2] | CHENCL P, WAN J Z. A rapid learning and dynamic step-wise updating algorithm for flat neural networks and the application to time-series prediction[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1999, 29(1): 62-72. |
[3] | CHENCL P, LIU Z L. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Net-works and Learning Systems, 2018, 29(1): 10-24. |
[4] |
YANG Y, WANG H. Multi-view clustering: a survey[J]. Big Data Mining and Analytics, 2018, 1(2): 83-107.
DOI URL |
[5] | XU C, TAO D, XU C. A survey on multi-view learning[J]. arXiv:1304.5634, 2013. |
[6] | LI J, ALLINSON N M, TAO D C, et al. Multitraining sup-port vector machine for image retrieval[J]. IEEE Trans-actions on Image Processing, 2006, 15(11): 3597-3601. |
[7] | SUN S, SHAWE-TAYLOR J. Sparse semi-supervised learning using conjugate functions[J]. Journal of Machine Learning Research, 2010, 11: 2423-2455. |
[8] | SUN S. Multi-view Laplacian support vector machines[C]// LNCS 7121: Proceedings of the 7th International Confer-ence on Advanced Data Mining and Applications, Beijing, Dec 17-19, 2011. Berlin, Heidelberg: Springer, 2011: 209-222. |
[9] | LUO Y, TAO D, XU C, et al. Multiview vector-valued mani-fold regularization for multilabel image classification[J]. IEEE Transactions on Neural Networks and Learning Sys-tems, 2013, 24(5): 709-722. |
[10] |
XU C, TAO D C, XU C. Large-margin multi-view inform-ation bottleneck[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1559-1572.
DOI URL |
[11] |
VAPNIK V, VASHIST A. A new learning paradigm: learning using privileged information[J]. Neural Networks, 2009, 22(5/6): 544-557.
DOI URL |
[12] | VAPNIK V, IZMAILOV R. Learning using privileged infor-mation: similarity control and knowledge transfer[J]. Journal of Machine Learning Research, 2015, 16: 2023-2049. |
[13] | 姜志彬. 基于多视角学习和迁移学习的分类方法及应用研究[D]. 无锡: 江南大学, 2019. |
JIANG Z B. Classification method and application research based on multi-perspective learning and transfer learning[D]. Wuxi: Jiangnan University, 2019. | |
[14] | CHENG J, WANG K Q. Multi-view sampling for relevance feedback in image retrieval[C]// Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, Aug 20-24, 2006. Washington: IEEE Computer Society, 2006: 881-884. |
[15] |
SUN S L, JIN F. Robust co-training[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2011, 25(7): 1113-1126.
DOI URL |
[16] |
ZHAO J, XIE X J, XU X, et al. Multi-view learning over-view: recent progress and new challenges[J]. Information Fusion, 2017, 38: 43-54.
DOI URL |
[17] |
张丹丹, 邓赵红, 王士同. 面向多视角数据的极大熵聚类算法[J]. 计算机科学与探索, 2016, 10(4): 554-564.
DOI |
ZHANG D D, DENG Z H, WANG S T. Maximum entropy clustering algorithm for multi-view data[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(4): 554-564.
DOI |
|
[18] | MUSLEA I, MINTON S, KNOBLOCK C A. Active learning with multiple views[J]. Journal of Artificial Intelligence Re-search, 2006, 27: 203-233. |
[19] | VALENTE F, WELLEKENS C. Maximum entropy discrim-ination (MED) feature subset selection for speech recog-nition[C]// Proceedings of the 2003 IEEE Workshop on Auto-matic Speech Recognition and Understanding, St Thomas, Nov 30-Dec 4, 2003. Piscataway: IEEE, 2003: 327-332. |
[20] | SUN S L, CHAO G Q. Multi-view maximum entropy discrim-ination[C]// Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, Aug 3-9, 2013. Menlo Park: AAAI, 2013: 1706-1712. |
[21] | CHAO G, SUN S. Consensus and complementarity based maximum entropy discrimination for multi-view classific-ation[J]. Information Sciences, 2016, 367: 296-310. |
[22] | XU X X, LI W, XU D. Distance metric learning using privileged information for face verification and person re-identification[J]. IEEE Transactions on Neural Networks & Learning Systems, 2015, 26(12): 3150-3162. |
[23] |
SHI J, XUE Z Y, DAI Y K, et al. Cascaded multi-column RVFL+classifier for single-modal neuroimaging-based diag-nosis of Parkinson’s disease[J]. IEEE Transactions on Bio-medical Engineering, 2018, 66(8): 2362-2371.
DOI URL |
[24] | BERK R A. Statistical learning from a regression perspe-ctive[M]. Berlin, Heidelberg: Springer, 2008. |
[25] | LANGE K, HUNTER D R, YANG I. Optimization transfer using surrogate objective functions[J]. Journal of Computa-tional & Graphical Statistics, 2000, 9(1): 1-20. |
[26] |
QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1): 1-28.
DOI URL |
[27] |
XIAN Y Q, LAMPERT C H, SCHIELE B, et al. Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(9): 2251-2265.
DOI URL |
[28] | CHUA T S, TANG J H, HONG R C, et al. NUS-WIDE: a real-world web image database from National University of Singapore[C]// Proceedings of the 8th ACM International Conference on Image and Video Retrieval, Santorini Island,Jul 8-10, 2009. New York: ACM, 2009: 1-9. |
[1] | 刘学文, 王继奎, 杨正国, 李冰, 聂飞平. 密度峰值隶属度优化的半监督Self-Training算法[J]. 计算机科学与探索, 2022, 16(9): 2078-2088. |
[2] | 谢娟英, 张凯云. XR-MSF-Unet:新冠肺炎肺部CT图像自动分割模型[J]. 计算机科学与探索, 2022, 16(8): 1850-1864. |
[3] | 陈洋, 王士同. 多样性正则化极限学习机的集成方法[J]. 计算机科学与探索, 2022, 16(8): 1819-1928. |
[4] | 杨政, 邓赵红, 罗晓清, 顾鑫, 王士同. 利用ELM-AE和迁移表征学习构建的目标跟踪系统[J]. 计算机科学与探索, 2022, 16(7): 1633-1648. |
[5] | 董文波, 孙仕亮, 殷敏智. 医学知识推理研究现状与发展[J]. 计算机科学与探索, 2022, 16(6): 1193-1213. |
[6] | 申瑞彩, 翟俊海, 侯璎真. 选择性集成学习多判别器生成对抗网络[J]. 计算机科学与探索, 2022, 16(6): 1429-1438. |
[7] | 谢欣彤, 胡悦阳, 刘譞哲, 赵耀帅, 姜海鸥. 传播用户代表性特征学习的谣言检测方法[J]. 计算机科学与探索, 2022, 16(6): 1334-1342. |
[8] | 张壮, 王士同. 不平衡数据的Takagi-Sugeno-Kang模糊分类集成模型[J]. 计算机科学与探索, 2022, 16(6): 1374-1382. |
[9] | 林佳伟, 王士同. 用于无监督域适应的深度对抗重构分类网络[J]. 计算机科学与探索, 2022, 16(5): 1107-1116. |
[10] | 孙武, 邓赵红, 娄琼丹, 顾鑫, 王士同. 基于模糊规则学习的无监督异构领域自适应[J]. 计算机科学与探索, 2022, 16(2): 403-412. |
[11] | 章枫叶欣, 王骏, 贾修一, 潘祥, 邓赵红, 施俊, 王士同. 面向多分类自闭症辅助诊断的标记分布学习[J]. 计算机科学与探索, 2022, 16(1): 194-204. |
[12] | 付 彬, 王志海, 王中锋. 最大化边际的分类器选取算法 [J]. 计算机科学与探索, 2011, 5(1): 59-67. |
[13] | 潘世瑞1 , 张阳1,2+ , 李雪 3 , 王勇 4 . 针对不确定正例和未标记学习的最近邻算法*[J]. 计算机科学与探索, 2010, 4(9): 769-779. |
[14] | 袁 磊1 , 张 阳2+ , 李 梅1 , 李 雪3 , 王 勇4 . 在数据流管理系统中实现快速决策树算法*[J]. 计算机科学与探索, 2010, 4(8): 673-682. |
[15] | 石国强, 牛常勇, 范 明+ . 使用PCA建立基于规则的组合分类器*[J]. 计算机科学与探索, 2010, 4(5): 455-463. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||