[1] ZHU T S, GAO W, LING C X. Perspective of knowledge discovery in database process model[J]. Computer Science, 1999, 26(2): 44-47.
朱廷劭, 高文, LING C X. 数据库中知识发现的处理过程模型的研究[J]. 计算机科学, 1999, 26(2): 44-47.
[2] ZHAO X J, SUN Z X, YUAN Y. An efficient association rule mining algorithm based on prejudgment and screening[J]. Journal of Electronics and Information Technology, 2016, 38(7): 1654-1659.
赵学健, 孙知信, 袁源. 基于预判筛选的高效关联规则挖掘算法[J]. 电子与信息学报, 2016, 38(7): 1654-1659.
[3] AGRAWAL R, IMIELINSKI T, SWAMI A. Mining associa-tion rules between sets of items in large databases[C]//Proceedings of the 1993 ACM SIGMOD International Con-ference on Management of Data, Washington, May 26-28, 1993. New York: ACM, 1993: 207-216.
[4] HAN J W, PEI J, YIN Y W, et al. Mining frequent patterns without candidate generation: a frequent-pattern tree app-roach[J]. Data Mining & Knowledge Discovery, 2004, 8(1): 53-87.
[5] ZAKI M J, PARTHASARATHY S, OGIHARA M, et al. New algorithms for fast discovery of association rules[C]//Pro-ceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, Newport Beach, Aug 14-17, 1997. Palo Alto: AAAI, 1997: 283-286.
[6] MAHBOUBI H, MOEZZI K, AGHDAM A G, et al. Distri-buted deployment algorithms for improved coverage in a network of wireless mobile sensors[J]. IEEE Transactions on Industrial Informatics, 2014, 10(1): 163-174.
[7] MINAEI-BIDGOLI B, BARMAKI R, NASIRI M. Mining numerical association rules via multi-objective genetic algorithms[J]. Information Sciences, 2013, 233: 15-24.
[8] THANGAVEL K, JAGANATHAN P. Rule mining algorithm with a new ant colony optimization algorithm[C]//Proceed-ings of the 2007 International Conference on Comput-ational Intelligence and Multimedia Applications, Sivakasi, Dec 13-15, 2007. Piscataway: IEEE, 2007: 135-140.
[9] WANG Z Q, SUN X, ZHANG D X. Classification rule min-ing based on particle swarm optimization[C]//LNCS 4062: Proceedings of the International Conference on Rough Sets and Knowledge Technology, Chongqing, Jul 24-26, 2006. Berlin, Heidelberg: Springer, 2006: 436-441.
[10] KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Joint Con-ference on Neural Networks, Perth, Nov 27-Dec 1, 1995. Piscataway: IEEE, 1995: 1942-1948.
[11] SHI Y, EBERHART R. A modified particle swarm optimizer[C]//Proceedings of the 1998 IEEE World Congress on Com-putational Intelligence, Anchorage, May 4-9, 1998. Piscat-away: IEEE, 1998: 69-73.
[12] CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
[13] HIGASHI N, IBA H. Particle swarm optimization with Gaus-sian mutation[C]//Proceedings of the 2003 IEEE Swarm Intelligence Symposium, Indianapolis, Apr 26, 2003. Piscat-away: IEEE, 2003: 72-79.
[14] RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255.
[15] JUANG C F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design[J]. IEEE Transac-tions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(2): 997-1006.
[16] SUN J, XU W B, FENG B. A global search strategy of quantum-behaved particle swarm optimization[C]//Proceed-ings of the 2004 IEEE Conference on Cybernetics and Intel-ligent Systems, Singapore, Dec 1-3, 2004. Piscataway: IEEE, 2004: 111-116.
[17] GAO Y, XIE S L. Chaos particle swarm optimization algorithm[J]. Computer Science, 2004, 31(8): 13-15.
高鹰, 谢胜利. 混沌粒子群优化算法[J]. 计算机科学, 2004, 31(8): 13-15.
[18] KENNEDY J, MENDES R. Population structure and particle swarm performance[C]//Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, May 12-17, 2002. Piscataway: IEEE, 2002: 1671-1676.
[19] BLACKWELL T, KENNEDY J. Impact of communication topology in particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 23: 689-702.
[20] JANSON S, MIDDENDORF M. A hierarchical particle swarm optimizer and its adaptive variant[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 35(6): 1272-1282.
[21] ZHANG C, YI Z. Scale-free fully informed particle swarm optimization algorithm[J]. Information Sciences, 2011, 181(20): 4550-4568.
[22] JIANG B, WANG N, WANG L P. Particle swarm optimiza-tion with age-group topology for multimodal functions and data clustering[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(11): 3134-3145.
[23] WUR S Y, LEU Y. An effective Boolean algorithm for mining association rules in large databases[C]//Proceedings of the 6th International Conference on Advanced Systems for Ad-vanced Applications, Hsinchu, Apr 19-21, 1999. Washington: IEEE Computer Society, 1999: 179-186.
[24] KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm algorithm[C]//Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Orlando, Oct 12-15, 1997. Piscataway: IEEE,1997: 4104-4108.
[25] CHEN M, LUDWIG S A. A fuzzy discrete particle swarm optimization classifier for rule classification[J]. International Journal of Hybrid Intelligent Systems, 2014, 11(3): 145-156.
[26] NASIRI M, TAGHAVI L S, MINAEE B. Multi-objective rule mining using simulated annealing algorithm[J]. Journal of Convergence Information Technology, 2010, 5(1): 60-68.
[27] MUKHOPADHYAY A, MAULIK U, BANDYOPADHYAY S, et al. A survey of multiobjective evolutionary algorithms for data mining: part I[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(1): 4-19.
[28] MERCERON A, YACEF K. Interestingness measures for association rules in educational data[C]//Proceedings of the 1st International Conference on Educational Data Mining, Montreal, Jun 20-21, 2008. International Educational Data Mining Society, 2008: 57-66.
[29] LI C L, CHEN S L. PSO-based weighted items association rules mining algorithm[J]. Journal of Jimei University (Natural Science), 2007, 12(1): 52-58.
李呈林, 陈水利. 基于PSO的加权关联规则挖掘算法[J]. 集美大学学报(自然科学版), 2007, 12(1): 52-58.
[30] GHOSH A, NATH B. Multi-objective rule mining using genetic algorithms[J]. Information Sciences, 2004, 163: 123-133.
[31] BEIRANVAND V, MOBASHER-KASHANI M, BAKAR A A. Multi-objective PSO algorithm for mining numerical association rules without a priori discretization[J]. Expert Systems with Applications, 2014, 41(9): 4259-4273.
[32] TAHYUDIN I, NAMBO H. The rules determination of num-erical association rule mining optimization by using combina-tion of PSO and Cauchy distribution[C]//Proceedings of the 2018 International Conference on Management Science and Engineering Management, Melbourne, Aug 1-4, 2018. Berlin, Heidelberg: Springer, 2018: 151-164.
[33] YAN D F, ZHAO X, LIN R H, et al. PPQAR: parallel PSO for quantitative association rule mining[C]//Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing, Shanghai, Jan 15-17, 2018. Piscataway: IEEE, 2018: 163-169.
[34] MOSLEHI F, HAERI A, MARTíNEZ-áLVAREZ F. A novel hybrid GA-PSO framework for mining quantitative associa-tion rules[J]. Soft Computing, 2020, 24(6): 4645-4666.
[35] FIDELIS M V, LOPES H S, FREITAS A A. Discovering comprehensible classification rules with a genetic algorithm[C]//Proceedings of the 2000 Congress on Evolutionary Com-putation, La Jolla, Jul 16-19, 2000. Piscataway: IEEE, 2000:805-810.
[36] KOU Z C, XI L F. Binary particle swarm optimization-based association rule mining for discovering relationships between machine capabilities and product features[J]. Mathe-matical Problems in Engineering, 2018, 2018(4): 1-16.
[37] DJENOURI Y, GHERAIBIA Y, MEHDI M, et al. An efficient measure for evaluating association rules[C]//Proceedings of the 2014 6th International Conference of Soft Computing and Pattern Recognition, Tunis, Aug 11-14, 2014. Piscataway: IEEE, 2015: 406-410.
[38] YKHLEF M. A quantum swarm evolutionary algorithm for mining association rules in large databases[J]. Journal of King Saud University-Computer and Information Sciences, 2011, 23: 1-6.
[39] GOU J, WANG F, LUO W. Mining fuzzy association rules based on parallel particle swarm optimization algorithm[J]. Intelligent Automation & Soft Computing, 2015, 21(2): 147-162.
[40] HOLLAND J H. Genetic algorithms and the optimal alloca-tion of trials[J]. SIAM Journal on Computing, 1973, 2(2): 88-105.
[41] LI H Y, PENG Y Z, DENG C Y, et al. Review of hybrids of GA and PSO[J]. Computer Engineering and Applications, 2018, 54(2): 20-28.
李红亚, 彭昱忠, 邓楚燕, 等. GA与PSO的混合研究综述[J]. 计算机工程与应用, 2018, 54(2): 20-28.
[42] Dorigo M, Gambardella L M. Ant colony system: a coopera-tive learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
[43] TELIKANI A, GANDOMI A H, SHAHBAHRAMI A. A survey of evolutionary computation for association rule mining[J]. Information Sciences, 2020, 524: 318-352.
[44] INDIRA K, KANMANI S, PRASHANTH P, et al. Popula-tion based search methods in mining association rules[C]//Proceedings of the Advances in Communication, Network, and Computing, Istanbul, Aug 26-29, 2012. Berlin, Heidel-berg: Springer, 2012: 255-261.
[45] EIBEN A E, HINTERDING R, MICHALEWICZ Z. Para-meter control in evolutionary algorithms[J]. IEEE Transac-tions on Evolutionary Computation, 1999, 3(2): 124-141.
[46] MANGAT V, VIG R. Novel associative classifier based on dynamic adaptive PSO: application to determining candi-dates for thoracic surgery[J]. Expert Systems with Applica-tions, 2014, 41(18): 8234-8244.
[47] INDIRA K, KANMANI S. Association rule mining through adaptive parameter control in particle swarm optimization[J]. Computational Statistics, 2015, 30(1): 251-277.
[48] ALATAS B, AKIN E. Multi-objective rule mining using a chaotic particle swarm optimization algorithm[J]. Know-ledge Based Systems, 2009, 22(6): 455-460.
[49] ZHANG Y D, HUANG S B. A novel multiobjective particle swarm optimization for buoys-arrangement design[C]//Pro-ceedings of the 2004 IEEE/WIC/ACM International Con-ference on Intelligent Agent Technology, Beijing, Sep 20-24, 2004. Washington: IEEE Computer Society, 2004: 24-30.
[50] AGRAWAL M, MISHRA M, KUSHWAH S P S. Associa-tion rules optimization using improved PSO algorithm[C]//Proceedings of the 2015 International Conference on Com-munication Networks, Gwalior, Nov 19-21, 2015. Piscat-away: IEEE, 2015: 395-398.
[51] CAI Z Q, HUANG H. Comprehensive learning particle swarm optimization algorithm with adaptive mutation[J]. Computer Engineering, 2009, 35(7): 170-171.
蔡昭权, 黄翰. 自适应变异综合学习粒子群优化算法[J]. 计算机工程, 2009, 35(7): 170-171.
[52] WANG F, GOU J. Mining fuzzy association rules based on multi-mutation particle swarm optimization algorithm[J]. Com-puter Science, 2013, 40(5): 217-223.
王飞, 缑锦. 基于多变异粒子群优化算法的模糊关联规则挖掘[J]. 计算机科学, 2013, 40(5): 217-223.
[53] WU R, ZHANG J L, LIU X L. An association rule mining algorithm based on mutation mechanism and QPSO[J]. Journal of Shandong University of Science and Technology (Natural Science), 2020, 39(2): 95-104.
吴嵘, 张姣玲, 刘小兰. 结合变异机制和量子PSO的关联规则挖掘算法[J]. 山东科技大学学报(自然科学版), 2020, 39(2): 95-104.
[54] SARATH K N V D, RAVI V. Association rule mining using binary particle swarm optimization[J]. Engineering Applica-tions of Artificial Intelligence, 2013, 26(8): 1832-1840.
[55] ZENG B C, WAN W G. Analysis of correlation features of terrorist organizations based on improved PSO-Apriori algo-rithm[J]. Electronic Measurement Technology, 2020, 43(1):46-51.
曾本冲, 万旺根. 基于改进PSO-Apriori算法的恐怖组织关联特征分析[J]. 电子测量技术, 2020, 43(1): 46-51.
[56] ZHOU F C, WANG Z J, YE F, et al. Research and improve-ment of Apriori algorithm for mining association rules[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(9): 1075-1083.
周发超, 王志坚, 叶枫, 等. 关联规则挖掘算法Apriori的研究改进[J]. 计算机科学与探索, 2015, 9(9): 1075-1083.
[57] CHEN J G. An availability measure of data mining on mass data[J]. Computer Engineering & Software, 2011, 32(5): 65-66.
陈建国. 一种海量数据挖掘的有效方法[J]. 软件, 2011, 32(5): 65-66.
[58] MISHRA S, MISHRA D, SATAPATHY K S. Particle swarm optimization based fuzzy frequent pattern mining from gene expression data[C]//Proceedings of the 2011 2nd Inter-national Conference on Computer and Communication Tech-nology, Allahabad, Sep 15-17, 2011. Piscataway: IEEE, 2011: 15-20.
[59] MISHRA S, SATAPATHY K S, MISHRA D. CLPSO-fuzzy frequent pattern mining from gene expression data[J]. Pro-cedia Technology, 2012, 4: 807-811.
[60] HAMIDI M, BORJI A. Color image segmentation with CLPSO based fuzzy[J]. International Journal of Computer Science and Network Security, 2007, 7(6): 215-221.
[61] SATHYA M, THANGADURAI D K. Implementation of optimization using Eclat and PSO for efficient association rule mining[J]. International Journal of Computer Engineering in Research Trends, 2017, 4(1): 4-8.
[62] KANG L L, DONG W Y, TIAN J S. Opposition-based particle swarm optimization with adaptive Cauchy mutation[J]. Com-puter Science, 2015, 42(10): 226-231.
康岚兰, 董文永, 田降森. 一种自适应柯西变异的反向学习粒子群优化算法[J]. 计算机科学, 2015, 42(10): 226-231.
[63] INDIRA K, KANMANI S. Mining association rules using hybrid genetic algorithm and particle swarm optimisation algorithm[J]. International Journal of Data Analysis Tech-niques and Strategies, 2015, 7(1): 59-76.
[64] AGARWAL A, NANAVATI N. Association rule mining using hybrid GA-PSO for multi-objective optimisation[C]//Proceedings of the 2016 IEEE International Conference on Computational Intelligence and Computing Research, Chennai, Dec 15-17, 2016. Piscataway: IEEE, 2017: 1-7.
[65] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transac-tions on Evolutionary Computation, 2002, 6(2): 182-197.
[66] COELLO C A C, LECHUGA M S. MOPSO: a proposal for multiple objective particle swarm optimization[C]//Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, May 12-17, 2002. Piscataway: IEEE, 2002: 1051-1056.
[67] ZHOU Z P, ZHANG D W, SUN Z W, et al. An adaptive hybrid PSO and GSA algorithm for association rules mining[C]//LNCS 9483: Proceedings of the International Conference on Cloud Computing and Security, Nanjing, Aug 13-15, 2015. Berlin, Heidelberg: Springer, 2015: 469-479.
[68] ZHAN Z H, ZHANG J, LI Y, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2009, 39(6): 1362-1381.
[69] RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: a gravitational search algorithm[J]. Information Sciences, 2009, 179(13): 2232-2248.
[70] SHE Y L, ZHOU L. A hazard analysis algorithm based on mixed ant colony association rules mining[J]. Computer Tech-nology and Development, 2018, 28(11): 89-93.
佘雅莉, 周良. 基于混合蚁群关联规则挖掘的危险源分析算法[J]. 计算机技术与发展, 2018, 28(11): 89-93.
[71] DHANALAXMI B, NAIDU A G, ANURADHA K. Adaptive PSO based association rule mining technique for software defect classification using ANN[J]. Procedia Computer Science, 2015, 46: 432-442.
[72] MA M, ZHANG L B. Particle swarm optimization of weighted fuzzy neural network model[C]//Proceedings of the 2012 3rd Global Congress on Intelligent Systems, Wuhan, Nov 6-8, 2012. Piscataway: IEEE, 2012: 58-61.
[73] BOOMILINGAM T, SUBRAMANIAM M. An efficient retrieval using edge GLCM and association rule mining guided IPSO based artificial neural network[J]. Multimedia Tools and Applications, 2017, 76(20): 21729-21747.
[74] KUO R J, PAI C M, LIN R H, et al. The integration of association rule mining and artificial immune network for supplier selection and order quantity allocation[J]. Applied Mathematics and Computation, 2015, 250: 958-972.
[75] WANG K, LIU T, HAN J W, et al. Top down FP-growth for association rule mining[C]//LNCS 2336: Proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Taipei, China, May 6-8, 2002: 334-340.
[76] PASTI R, CASTRO L N D. An immune and a gradient-based method to train multi-layer perceptron neural net-works[C]//Proceedings of the 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, Jul 16-21, 2006. Piscataway: IEEE, 2006: 2075-2082.
[77] GUO S W, MENG Y Y, CHEN S L. Application of improved PSOGM algorithm in dynamic association rule mining[J]. Computer Engineering and Applications, 2018, 54(8): 160-165.
郭世伟, 孟昱煜, 陈绍立. 改进的PSOGM算法在动态关联规则挖掘中的应用[J]. 计算机工程与应用, 2018, 54(8):160-165.
[78] WANG C W, YIN S L, LIU W Y, et al. High utility itemset mining algorithm based on improved particle swarm optimiza-tion[J]. Journal of Chinese Computer Systems, 2020, 41(5): 1084-1090.
王常武, 尹松林, 刘文远, 等. HUIM-IPSO:一个改进的粒子群优化高效用项集挖掘算法[J]. 小型微型计算机系统, 2020, 41(5): 1084-1090.
[79] AHMED C F, TANBEER S K, JEONG B, et al. Efficient tree structures for high utility pattern mining in incremental databases[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(12):1708-1721.
[80] YANG Z M, WANG W J, GUO X E. Stock data mining of association rules based on synergy of particle swarm[J]. Journal of Jilin Normal University (Natural Science Edition), 2012, 33(3): 31-34.
杨泽民, 王文军, 郭显娥. 基于协同微粒群的股票数据关联规则挖掘[J]. 吉林师范大学学报(自然科学版), 2012, 33(3): 31-34.
[81] KUO R J, CHAO C M, CHIU Y T. Application of particle swarm optimization to association rule mining[J]. Applied Soft Computing, 2011, 11(1): 326-336.
[82] ABDI M J, GIVEKI D. Automatic detection of erythemato-squamous diseases using PSO-SVM based on association rules[J]. Engineering Applications of Artificial Intelligence, 2013, 26(1): 603-608.
[83] VAPNIK V N. The nature of statistical learning theory[M]. Berlin, Heidelberg: Springer, 1995.
[84] WANG L, ZHANG Y J, ZHONG S S, et al. Binary particle swarm optimization based process knowledge mining for typical parts of satellite[J]. Journal of Northeastern University (Natural Science), 2015, 36(1): 119-123.
王琳, 张永健, 钟诗胜, 等. 基于二进制粒子群优化的卫星典型件工艺知识挖掘[J]. 东北大学学报(自然科学版), 2015, 36(1): 119-123.
[85] TONG S, XU H T, ZHOU X W. Particle swarm optimiza-tion-based association rule mining in big data environment[J]. IEEE Access, 2019, 7: 161008-161016.
[86] SUN Z L, ZHU X F, PAN Y Z, et al. Flood risk analysis: progress, challenges and prospect[J]. Journal of Catastro-phology, 2017, 32(3): 125-130.
孙章丽, 朱秀芳, 潘耀忠, 等. 洪水灾害风险分析进展与展望[J]. 灾害学, 2017, 32(3): 125-130.
[87] WANG Z L, CHEN X H, LAI C G, et al. Flood risk assess-ment model based on particle swarm optimization rule mining algorithm[J]. System Engineering-Theory & Practice, 2013, 33(6): 1615-1621.
王兆礼, 陈晓宏, 赖成光, 等. 基于粒子群规则挖掘算法的洪灾风险评价模型[J]. 系统工程理论与实践, 2013, 33(6):1615-1621.
[88] SHE X Y, ZHANG L. Apriori parallel improved algorithm based on MapReduce distributed architecture[C]//Proceedings of the 2016 6th International Conference on Instrumentation & Measurement, Computer, Communication and Control, Har-bin, Jul 21-23, 2016. Piscataway: IEEE, 2016: 517-521.
[89] LI H Y, WANG Y, ZHANG D, et al. PFP: parallel FP-growth for query recommendation[C]//Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Oct 23-25, 2008. New York: ACM, 2018: 107-114.
[90] FENG X J, PAN X. Eclat algorithm based on Spark[J]. Application Research of Computers, 2019, 36(1): 18-21.
冯兴杰, 潘轩. 基于Spark的并行Eclat算法[J]. 计算机应用研究, 2019, 36(1): 18-21.
[91] HUANG F, FAN X P. Parallel particle swarm optimization algorithm with island population model[J]. Control and Decision, 2006, 21(2): 175-179.
黄芳, 樊晓平. 基于岛屿群体模型的并行粒子群优化算法[J]. 控制与决策, 2006, 21(2): 175-179.
[92] GAO S, YANG J Y. Research on chaos particle swarm optimi-zation algorithm[J]. Pattern Recognition and Artificial Intel-ligence, 2006, 19(2): 266-270.
高尚, 杨静宇. 混沌粒子群优化算法研究[J]. 模式识别与人工智能, 2006, 19(2): 266-270.
[93] HE D, CHANG H, CHANG Q, et al. Particle swarm optimi-zation based on the initial population of clustering[C]//Pro-ceedings of the 2010 International Conference on Natural Computation, Yantai, Aug 10-12, 2010. Piscataway: IEEE, 2010: 2664-2667.
[94] JIN Y X, CHENG H Z, YAN J Y, et al. Improved particle swarm optimization method and its application in power transmission network planning[J]. Proceedings of the Chinese Society for Electrical Engineering, 2005, 25(4): 46-50.
金义雄, 程浩忠, 严健勇, 等. 改进粒子群算法及其在输电网规划中的应用[J]. 中国电机工程学, 2005, 25(4): 46-50. |